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We present a protocol for oblivious-transfer that can be implemented with an optical continuous-variable system, and
prove its security in the noisy-storage model. This model assumes that the malicious party has only limited capabilities
to store quantum information at one point during the protocol. The security is quantified by a trade-off relation between
generated quantum uncertainty and the classical capacity of the memory channel. As our main technical tool, we study
and derive uncertainty relations for continuous-variable systems that are essential to analyse security in the noisy-

quantum-storage model.

Introduction. Quantum key distribution (QKD) offers se-
curity that rests only on the laws of quantum mechanics™.
QKD is feasible with current technology, and implementa-
tions have already reached high maturity. Yet, there are still
important cryptographic protocols which cannot be realized
without additional assumptions, even using quantum com-
munication*!¥. Examples of such protocols are oblivious-
transfer (OT), bit commitment or secure password-based iden-
tification, where two distrustful parties (Alice and Bob) en-
gage in a protocol and want to be ensured that the other
party cannot cheat or influence the outcome. Intuitively, what
makes such tasks more difficult is that unlike in QKD where
Alice and Bob trust each other and can hence work together
to check on the eavesdropper, each party has to fend for itself.

Due to the great practical importance of problems such as
secure identification one is willing to rely on assumptions in
order to achieve security. Classically, these are usually com-
putational assumptions: First, one assumes that a particular
problem such as factoring a large integer requires a large
amount of computational resources. Second, one assumes
that the adversary does not possess sufficient computational
resources to solve that problem. Relying on such assumptions
is difficult if one is interested in protocols that are fully future
proof. Indeed, if a quantum computer is built in the future, any
protocol whose security relies on the difficulty of factoring for
example can retroactively be broken.

Instead of such computational assumptions, another line of
research pursues physical assumptions on the adversary. Ex-
amples of such assumptions are that Alice and Bob are split
into several space-like separated agents, a scenario that has
been considered in classical cryptography! as well as rela-
tivistic quantum cryptography'#1¢. Security in such models
demands such a space-like separation to exist in perpetuity,
and security can retroactively be broken once the agents can
communicate. This has severe consequences for our ability
to use protocols based on relativistic assumptions as building
blocks to solve more complicated cryptographic tasks.

Another physical assumption is the so-called bounded-
storage model introduced classically!8, and later extended
to the situation of bounded quantum storage’®<?, and noisy
quantum storage*. Apart from classical storage being cheap

and plentiful, the classical bounded storage model has the
property that honest parties require a storage of O(n) to exe-
cute a protocol in which n bits are sent, while the adversary
can break the protocol using a mere O(n?) bits of classical
storage. This is in sharp contrast to the quantum case, where
the honest parties require no quantum memory at all to exe-
cute the protocol, while security is possible for any adversary
who can store less than n — O(logn) qubits** when n qubits
are sent in the protocol. This is essentially optimal.

Such bounds have been obtained using the more general
perspective of noisy-quantum storage?! in which the adver-
sary can have an arbitrary noisy quantum storage device. In
particular, this model can deal with devices that have even
infinite degrees of freedom, but whose capacity for storing in-
formation is nevertheless limited. In23|the security has been
related to the classical capacity of the storage channel, in 24
to the entanglement cost and in 22| and [25/to the quantum ca-
pacity. Indeed, it has been shown that any assumption that
leads to a limit of the adversary’s entanglement leads to se-
curity?#2%, The experimental feasibility of such protocols has
been demonstrated in®®%7,

The assumption on the storage devices can be justified be-
cause they require advanced quantum information technolo-
gies that are assumed to be very challenging. However, any
limit on the adversary’s ability to store quantum information
during a particular time period in the protocol, can in princi-
ple enable security: given a storage assumption we can com-
pute the number of signals we need to send in order to obtain
security. It is useful to realize that this assumption is fully
future proof, in the sense that an adversary buying a much
larger quantum storage device after this time period cannot
retroactively break the protocol. As such, assumptions that
limit the adversary’s ability to store information are very ap-
pealing when it comes to building larger cryptographic proto-

cols from basic primitives5.,

The protocols proposed so farl#2123123262950 4re based on

discrete-variable systems that require single-photon sources
and single-photon detectors. Despite recent improvements,
both are still challenging technologies®!. Here, we analyze
the security in the noisy-storage model for protocols based
on optical continuous-variable systems, where the informa-



tion is encoded in the quadrature of the electromagnetic field
(see, e.g., [32). This information can then be read out effi-
ciently using standard telecommunication technology such as
homodyne detection. While discrete-variable protocols usu-
ally suffer from inefficient photon sources and detectors as
well as photon losses, continuous-variable implementations
suffer from lower fidelity, which, for instance, in crypto-
graphic protocols result in more demanding classical post-
processing=3=2,

Our main contribution is to derive uncertainty relations
for CV systems, which are central ingredients to obtain se-
curity in the noisy-storage model. Moreover, we propose a
practical protocol for implementing OT with CV systems and
discuss its security in the noisy-storage model by applying
the derived uncertainty relations. OT is particularly important
as it is universal for two-party cryptography, i.e., any two-
party primitive (such as bit commitment or password-based
identification) can be generated from it by classical post-
processing®®. The security of our OT protocol is proven using
techniques front??, which enable us to relate the security in the
noisy-storage model to the classical capacity of the quantum
memory channel together with recent strong converse for the

classical capacity of important bosonic channels*7.

Due to the non-perfect correlations that are unavoidable
with a CV encoding at any finite squeezing strength, error-
correction information (EC) has to be exchanged during the
protocol. However, the amount of EC competes with the
uncertainty that is generated by randomly choosing between
maximally complementary measurements, i.e., observables
satisfying the canonical commutation relation [Q,P] = i
(h = 1). This has the consequence that very tight uncertainty
relations are required to obtain a good trade-off. While we
show an uncertainty relation that holds without any additional
assumptions by using majorization techniques similar to 40, it
turns out that it is not sufficient to obtain a good trade-off.

We overcome this technical problem by showing uncer-
tainty relations under reasonable assumptions on the power of
the malicious party. In particular, we show that if the encoding
into the quantum memory is restricted to mixture of Gaussian
operations, reasonable trade-offs can be achieved and imple-
mentations solely based on preparation and measurement of
coherent states are possible. Moreover, if the encoding into
the quantum memory can only act on a limited number of
modes we still find a positive trade-off without any restric-
tion to Gaussian operations. We then analyze the security of
the OT protocol in both cases by assuming that the decoher-
ence of the memory channel is modeled by a lossy and noisy
bosonic Gaussian channel.

CYV Uncertainty Relations for the Noisy Storage Model.
The difficult case is security against the memory-bounded ma-
licious Bob. In this case, we purify the protocol and consider
a situation in which dishonest Bob is actually more power-
ful and can send a random n-mode state from an ensemble
o*, k € K, to Alice who generates an outcome X by (hon-
estly) measuring for any state randomly (§ € {0, 1}™) either
quadrature Q (#° = 0) or P (§" = 1) (see, e.g., 23). The
question is how much randomness can Alice extract, which
is uncorrelated to Bob. Using privacy amplification and the
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FIG. 1. The plot shows Ay, (blue), A, (orange), Afp (green)
depending on §. We have chosen n = 10%,¢ = 10™°, and for Afjp
additionally m = 10. For security of OT in the noisy storage model
the uncertainty bounds have to be larger than the error rate (red),
which is plotted for an EPR state with variance V' = 3 and one-sided
losses of 0.05 and excess noise 0.001.

left-over hash lemma*', we know that this is determined by

the smooth min-entropy H¢; (X|0K). Hence, the goal is to
give a bound A¢(n) on the entropy rate, that is, an uncertainty
relation of the form

H€

min

1
= Hiyn(X]0K) = X(n). (1)
n
A non-trivial bound only exists for coarse-grained quadrature
measurements ()5 and Ps with a fixed binning §.
We derive three different uncertainty bounds denoted by
Maj» AGauss a0d Afp. The first is valid without restrictions

on the states p* and is derived using majorization techniques
similar to 40. The second, Ag,,. holds under the assump-
tion that the states are mixtures of Gaussian states. Finally,
the third, A\EP . applies under the assumption that the ensem-
ble is given by an independent and identical distribution of
m mode states (m < n). The three bounds are compared in
Fig.[T}

CV Protocol for OT in the Noisy Storage Model. We
consider a randomized version of OT2*" in which Alice has
no input and obtains as output two random strings sg, s1 €
{0,1}*, and Bob has an input ¢ € {0, 1} and obtains a string
sp € {0, 1}*. Correctness requires that the string sp is equal
to s.. Security for Alice requires that a malicious Bob does
not learn anything about the string s1_.., and security for Bob
requires that a malicious Alice does not learn c. See the tech-
nical version for the composable security definitions.

The CV protocol we propose goes roughly as follows
(c.£.130).

1) Alice distributes n EPR states with variance V' > 1
(two-mode squeezed states). Alice and Bob measure in
bases ()5 or Ps according to random independent ba-
sis strings 04,05 € {0,1}™ generating strings of out-
comes X for Alice and Y for Bob, respectively.

2) They wait for a fixed time At.

3) Alice sends Bob her basis cho_ice 04. Bob defines the
sets I, = {i € [n] | 0%, = 03} and I; = [n]\I. and
sends Iy, I to Alice.



4) Alice forms the strings Xy = (X%);er, for k = 0,1,
computes EC syndroms Wy, Wy for Xy, X7 using an
EC protocol with rate rgc, and sends it to Bob who cor-
rects his string Y, = (Y%);¢z. according to W, to obtain
Y!.

5) Alice chooses random hash functions fy, f1 to £-bit
strings and outputs s, = fx(X%), & = 0,1. She then
sends fo, f1 to Bob who outputs sp = f.(Y).

Note that the above protocol can be implemented in a
prepare-and-measure way. Correctness is ensured since the
outcomes of Alice and Bob are correlated when measured in
the same basis. By sending sufficient EC information, i.e.,
lgc = nH(X|Y), Bob can recover Alice’s string. Security
for Bob follows since he only sends the information Iy, I3
which is independent of c. Security for Alice is more deli-
cate to prove. In fact, if malicious Bob has a perfect quantum
memory that can store the n modes over time At, he can wait
until Alice sends her basis choice 64 and measure accord-
ingly. Thus, he obtains both sy and s;.

However, if Bob’s memory device is noisy, he will not have
enough information to recover both of the strings. In a simi-
lar way as in>“? for a discrete variable protocol, we show a
trade-off between security and the classical capacity of Bob’s
memory channel:

Assume that Bob has vn quantum memories £ for which
the success probability for sending classical information at a
rate R bigger than the classical capacity C(€) is exponentially
suppressed, i.e., £ satisfies a strong converse. Then, we can
obtain security for our OT protocol if

1
TOT:§()\€—TEc)—VC(€)>O, (2)

where A€ is a bound on the uncertainty rate of Alice’s mea-
surement (I). Moreover, the length of the string in the OT
protocol is given by { = nror for sufficiently large n.

We can now evaluate the above condition by using the dif-
ferent uncertainty bounds, Ay, AGyyss and Afp. As a neces-
sary condition, we have that A\ has to be larger than the error
correction rate. From Fig. [T} we see that without any con-
straints (i.e., Ay,;) there exists only a very restricted region

for which this is satisfied. Moreover, %()\6 — TEc) is very
small such that no good trade-off can be expected.

But we obtain a better trade-off if we restrict Bob’s encod-
ing operations, i.e., AG,,s and Afp. Note that both constraints
are reasonable from a practical point of view. For instance,
implementations of efficient non-Gaussian operations are very
challenging and often of non-deterministic nature*2, Block
encoding, i.e., A\fjp, can be justified since coherent encoding
over all n modes is technologically demanding, and Bob has
to wait until all modes arrive, which might already requires a
short term memory device. Moreover, in the asymptotic limit
this assumption is no restriction*¥* .

We plot in Fig. [2] the minimal constraints on Bob’s quan-
tum memory under Gaussian assumption (see 44! for more
plots). Therein, the memory channel is assumed to be a ther-
mal noise channel with transmissivity 7 and thermal number
Ny, plus Gaussian additive noise with variance V. For such
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FIG. 2. The plots show when condition (2) is satisfied with equality
for AGaus (i-e., left side of plots are secure regions). On the hori-
zontal axis the transmissivity 7 is plotted and the vertical axis cor-
responds to the mean photon number Ny, of the thermal noise chan-
nel (solid) and the noise variance Vi (dashed) for Nmax = 30 and
v =1,1/3,1/5 (from left to right). For the solid line we set Viy = 2
and for the dashed lines Ny, = 1. The EPR state has variance V' = 3
and for the transmission from Alice to Bob we assume transmissivity

7 = 0.96 and noise £ = 0.001. Moreover, error correction efficiency
is set to 8 = 0.96 (see, e.g., 34 and[33), n = 10® and e = 107°.

a channel, a strong converse has recently been shown” un-
der a maximal photon number constraint Np,,x. We see that
under additional bounds on the memory size v < 1, trade-
offs are obtained even for optimistic assumptions on Bob’s
memory. While the plot is for realistic squeezing strengths,
similar bounds are obtained for the coherent state protocols
for v = 1,1/6,1/12. For similar assumptions but values
(v,m) = (1,1),(1/8,1),(1/8,10) we obtain similar regions
for A\fp-

Conclusion We have presented an OT protocol for CV sys-
tems that provides security in the noisy storage model. The
protocol is practical and uses similar resources as CV QKD.
Under the constraint that Bob uses a Gaussian memory attack,
an implementation with coherent states can provide security.
As a key ingredient, we analyze and derive uncertainty rela-
tions for CV systems, which can be used along similar lines
to analyze the security in the noisy-storage model for other
protocols such as bit commitment or secure password-based
identification*?>??, We leave as open problem the task of
finding optimal uncertainty relations without any further as-
sumptions. It is possible such relations can be obtained by
linking security again to the quantum capacity of the storage
device??% requiring however more sophisticated techniques.
Such a result would also pose a challenge to find an explicit
strong converse for the quantum capacity for bosonic chan-
nels.
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We present a protocol for oblivious-transfer that can be implemented with an optical continuous-variable system, and
prove its security in the noisy-storage model. This model assumes that the malicious party has only limited capabilities
to store quantum information at one point during the protocol. The security is quantified by a trade-off relation between
generated quantum uncertainty and the classical capacity of the memory channel. As our main technical tool, we study
and derive uncertainty relations for continuous-variable systems that are essential to analyse security in the noisy-
quantum-storage model.

. INTRODUCTION

Quantum key distribution (QKD) offers security that rests only on the laws of quantum mechanics™. QKD is feasible with
current technology, and implementations have already reached high maturity. Yet, there are still important cryptographic pro-
tocols which cannot be realized without additional assumptions, even using quantum communication*'1%, Examples of such
protocols are oblivious-transfer (OT), bit commitment or secure password-based identification, where two distrustful parties
(Alice and Bob) engage in a protocol and want to be ensured that the other party cannot cheat or influence the outcome. Intu-
itively, what makes such tasks more difficult is that unlike in QKD where Alice and Bob trust each other and can hence work
together to check on the eavesdropper, each party has to fend for itself.

Due to the great practical importance of problems such as secure identification one is willing to rely on assumptions in order
to achieve security. Classically, these are usually computational assumptions: First, one assumes that a particular problem such
as factoring a large integer requires a large amount of computational resources. Second, one assumes that the adversary does not
possess sufficient computational resources to solve that problem. Relying on such assumptions is difficult if one is interested in
protocols that are fully future proof. Indeed, if a quantum computer is built in the future, any protocol whose security relies on
the difficulty of factoring for example can retroactively be broken.

Instead of such computational assumptions, another line of research pursues physical assumptions on the adversary. Examples
of such assumptions are that Alice and Bob are split into several space-like separated agents, a scenario that has been considered
in classical cryptography™ as well as relativistic quantum cryptography#11%. Security in such models demands such a space-
like separation to exist in perpetuity, and security can retroactively be broken once the agents can communicate. This has severe
consequences for our ability to use protocols based on relativistic assumptions as building blocks to solve more complicated
cryptographic tasks.

Another physical assumption is the so-called bounded-storage model introduced classically*, and later extended to the
situation of bounded quantum storage!®2%, and noisy quantum storage?!. Apart from classical storage being cheap and plentiful,
the classical bounded storage model has the property that honest parties require a storage of O(n) to execute a protocol in which
n bits are sent, while the adversary can break the protocol using a mere O(n?) bits of classical storage. This is in sharp contrast to
the quantum case, where the honest parties require no quantum memory at all to execute the protocol, while security is possible
for any adversary who can store less than n — O(logn) qubits? when n qubits are sent in the protocol. This is essentially
optimal.

Such bounds have been obtained using the more general perspective of noisy-quantum storage?!' in which the adversary can
have an arbitrary noisy quantum storage device. In particular, this model can deal with devices that have even infinite degrees of
freedom, but whose capacity for storing information is nevertheless limited. In|23|the security has been related to the classical
capacity of the storage channel, in [24] to the entanglement cost and in 22| and 25/ to the quantum capacity. Indeed, it has been
shown that any assumption that leads to a limit of the adversary’s entanglement leads to security?22>. The experimental feasibility
of such protocols has been demonstrated in“%27,

The assumption on the storage devices can be justified because they require advanced quantum information technologies
that are assumed to be very challenging. However, any limit on the adversary’s ability to store quantum information during a
particular time period in the protocol, can in principle enable security: given a storage assumption we can compute the number
of signals we need to send in order to obtain security. It is useful to realize that this assumption is fully future proof, in the sense
that an adversary buying a much larger quantum storage device after this time period cannot retroactively break the protocol.
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As such, assumptions that limit the adversary’s ability to store information are very appealing when it comes to building larger
cryptographic protocols from basic primitives=®.

The protocols proposed so farl?212325262930' are based on discrete-variable systems that require single-photon sources and
single-photon detectors. Despite recent improvements, both are still challenging technologies®!. Here, we analyze the security
in the noisy-storage model for protocols based on optical continuous-variable systems, where the information is encoded in
the quadrature of the electromagnetic field (see, e.g., 32). This information can then be read out efficiently using standard
telecommunication technology such as homodyne detection. While discrete-variable protocols usually suffer from inefficient
photon sources and detectors as well as photon losses, continuous-variable implementations suffer from lower fidelity, which,
for instance, in cryptographic protocols result in more demanding classical post-processing®¥=>.

Our main contribution is to derive uncertainty relations for CV systems, which are central ingredients to obtain security in the
noisy-storage model. Moreover, we propose a practical protocol for implementing OT with CV systems and discuss its security
in the noisy-storage model by applying the derived uncertainty relations. OT is particularly important as it is universal for two-
party cryptography, i.e., any two-party primitive (such as bit commitment or password-based identification) can be generated
from it by classical post-processing®®. The security of our OT protocol is proven using techniques from®J, which enable us
to relate the security in the noisy-storage model to the classical capacity of the quantum memory channel together with recent
strong converse for the classical capacity of important bosonic channels*Z*32,

Due to the non-perfect correlations that are unavoidable with a CV encoding at any finite squeezing strength, error-correction
information (EC) has to be exchanged during the protocol. However, the amount of EC competes with the uncertainty that is
generated by randomly choosing between maximally complementary measurements, i.e., observables satisfying the canonical
commutation relation [@Q), P] = i (5 = 1). This has the consequence that very tight uncertainty relations are required to obtain
a good trade-off. While we show an uncertainty relation that holds without any additional assumptions by using majorization
techniques similar to 40, it turns out that it is not sufficient to obtain a good trade-off.

We overcome this technical problem by showing uncertainty relations under reasonable assumptions on the power of the
malicious party. In particular, we show that if the encoding into the quantum memory is restricted to mixture of Gaussian
operations, reasonable trade-offs can be achieved and implementations solely based on preparation and measurement of coherent
states are possible. Moreover, if the encoding into the quantum memory can only act on a limited number of modes we still find
a positive trade-off without any restriction to Gaussian operations. We then analyze the security of the OT protocol in both cases
by assuming that the decoherence of the memory channel is modeled by a lossy and noisy bosonic Gaussian channel.

Il. CONTINUOUS VARIABLE UNCERTAINTY RELATIONS FOR THE NOISY STORAGE MODEL
Il.1. Setting and Notation

In the following we consider maximal complimentary quadrature observables, which are equivalent to position-momentum
operators () and P satisfying the canonical commutation relation [Q, P] = i (h = 1) (see, e.g.,[32). They are uniquely
represented on % = L?(IR) and act on smooth functions as multiplication and differential operator. We further denote by Eq
and Ep the projection-valued measure such that Q = [ ¢Eq(q)dg and P = [ pEp(p)dp.

In the following we are mainly interested in coarse-grained measurements of () and P given by projections onto a finite
interval I C R, i.e.,

Qm=ﬁ%@® (1)

PM=£&WM% 2)

Let Ps = {Ix }ken be a partition of R into disjoint intervals I, of length §. We then define the positive operator-valued measure
(POVM) with finite binning position and momentum measurements as Q5 = {Q%} and Ps = {PF} with Q% = Q[I}] and
P} = P[I}] (see*!' for more details).

The situation of interest in the noisy- or bounded-storage model is given as follows One party referred to as Bob
prepares an n-mode state p¥ from an ensemble {p" } v, which is correlated to a classical random variable K. He then sends
the state to another party Alice who measures uniformly at random on each mode either quadrature @) or P. In the following,
we denote the random variable corresponding to Alice’s measurement choice by § € {0,1}", where #° = 0 refers to a Q
measurement of the ith mode and #* = 1 to a P measurement. Moreover, we denote the random variable describing Alice’s
measurement outcomes by X.

We are then interested how much randomness Alice can extract which is uncorrelated to Bob. Using privacy amplification
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and the left-over hash lemma****, we know that this is determined by the smooth min-entropy H;, (X |0K), of the state
1 o
pxnon = o 3 pic(k) (TN @ 18) 0] @ 1) (. B
0.3,k
where T19 = Q5 , I, = Py and H(’l = @, I1% . For a definition and discussion of the smooth min-entropy we refer to**+*

and references thereln Hence we are 1nterested to derlve lower bounds on the smooth min-entropy, i.e.,

€
Hmln

(X]0K) > A(n). €

This quantifies how well Bob can guess the outcome of two complementary measurements and is therefore an uncertainty
relation. In the following, we derive three different bounds.

I.2. Uncertainty Relations for Renyi-Entropies

In order to derive tight bounds, we do not bound the smooth min-entropy directly. Instead, it is beneficial to use that they can
be related to the conditional a-Renyi entropies

1 ) o
Ho(AIB), = 7—— trlpip(ida ® pp) 7], )
for bipartite state p4p and . In particular, it holds for o € (1,2] and any two random variables X and Y that*
2
HIEInn(X|Y) > HCK(X‘Y) - 1 log ? ) (6)

where we present in Lemma|l|a simple generalization to unbounded classical variables X and Y. Hence, applied to the smooth
min-entropy in (@) we obtain
. 1 2
Hmm(X|6K) > sup (Ha(X10K) o) (7

Hence, for large n we obtain tight uncertainty relation for the smooth min-entropy by tight uncertainty relations for Renyi
entropies of order « € (1, 2].

Since we are only interested in the situation where the side-information is classical it is sufficient to consider the situation for
n = 1 and K trivial. Following the same arguments as in 46, we can show that if H,(X|6) > X holds for n = 1, then it holds
that H, (X |0K) > n\ for any n.

Hence, we focus in the following on the case of n = 1 and trivial K. That is, the system A is a position-momentum system
and 6 € {0, 1} is a uniformly distributed random variable indicating the measurement choice, i.e., # = 0 and § = 1 correspond
to Q5 and Ps. The goal is to derive a lower bound on H,, (X |6) independent on the sate.

1.2.1. Continuous Measurements.

For simplicity, consider first the case for 6 — 0. Unfortunately, there exists no lower bound on the differential conditional
Renyi-entropy h, (X |0) is given as

_ 1
2= e (X10)s — 3 lpalls +llpalla) (8)
where pg, pp € L'(R) are the position and momentum distributions. Then there exists distributions in L' (R) that are not in

L*(R), i.e., the a-norm is unbounded. Thus, the right hand side of @]) is unbounded. The right hand side of @I) can even be
made arbitrary large for Gausssian states. For a normal distribution with standard variance o, the differential Renyi entropy is

ha(X) = log[2roa®@1]. 9)
Hence, we obtain that
1 1
o(1—a)ha(X]0), _ (27r)<1fcv>/2071/2(ﬁ + ﬁ) , (10)
JQ O'P

This quantity can be made arbitrary large by taking a sufficiently small standard variance for either o or op.



11.2.2. Coarse-grained Measurements.

However, the divergence of the entropy is not a problem for coarse-grained outcomes. Let us write
1
(1—a)Ho (X10), _ = ey a
2 72(% qk+§l P, (11)

where ¢, denotes the probability to measure a position in the interval I, with |I| = 6 and Ps = {Iy} a partition of R (and
similar for p;). Then, since both sums are smaller than 1, they are of course bounded. Moreover, the distributions {qx } and {p; }
cannot be arbitrary. In particular it has been shown by Landau and Pollak*” (see also 48| Section 2.9) that if ¢» € L?(R) with

[|4]|2 = 1 and 4 its Fourier transform, then the quantities

a/2
o = / ¥ (z)dz (12)
—a/2
b2
#= [ i 13
—b/2
satisfy the inequality
cos™'(a) + cos™H(B) > cos™! (V/e(a,b)). (14)
This condition can be reformulated in the following way:
e if 0 < 32 < ¢(a, b), then all values for « are possible
e if c(a,b) < (%, then
a<BVet(1-82)(1-c). (15)

The same holds not only for pure states, but also for any mixed state.
Let us denote in the following the bound on o from (T3) by

g9(g,a,b) = \/qc(a7 b) + \/(1 —q)(1 —c(a,b)). (16)

We further write for simplicity ¢g(q, a) if a = b and simply ¢(q) if @ and b is clear from the context. The above condition imposes
constraints on the possible probability distributions {gx} and {p;}. For instance, if (g0, q1, g2, ...) is fixed and decreasingly
ordered then we get the following set of constraints:

(1) for any k, it holds that

l

pr < g(q,0,0) and Vil : pj < 9(2%7 (I+1)6,9) (17)
i=0
(2) for any kq, ko, it holds that
l
Pry + Prs < 9(,0,20) and V1= pr, +pr, < g( D ai, (1+1)5,26) (18)
=0

(n) and in general for any k1, ko, ..., ky,, it holds for all [ that
n l
> p, <9(Y_ai (L+1)d,nd) . (19)
j=1 i=0

The question is now how to obtain a useful bound using these conditions.



11.2.3. Majorization Bound.

This bound follows an idea from 40l Let us denote by » = (¢ & p)< the decreasingly ordered direct sum of the sequences
q = {qx} and p = {p;}. Since the function r — >, 77 is Schur convex, we get an upper bound on if we find a sequence
w which majorizes any physically possible sequence r. Such an w can now be constructed in the following way*"

First note that from equation (I3)) follows that

o+ %2 <1++/c(a,b). (20)

Assume now that the length of the interevals used for the discretization for position is §¢ and for momentum dp. We then easily
find that for any n

er < 1+ F,(dq,6p), (21)
j=1
where
Fy(dq,0p) = max \/ c(kdg, (n — k)op) . (22)

Note that in the case dq = dp the maximum is attained for & = [ 3 |.
Hence, we can construct a majorizing sequence w by setting recursively

wy =1, and wy, = Fy, — wg_1 fork > 2. (23)
The obtained bound on the Renyi-entropy is then
Ho(X10) = By, (24

where
Bl =7 log ( Zwk (25)

This then translates into a bound on the smooth min-entropy via

Hélm(X 0K) > Mg » (26)
with
1 2
L B — ——log —). 27
Maj 12222 ( Maj ’I'L(Oé . 1) 0og 62) ( )

Since By, depends on the recursevely defined sequence w in (23), there is no closed form and it can only be computed
numerically. And for numerical calculations of a majorizing sequence one has to stop the recursion relation after a finite number
of steps N setting wy = 1 — wy—1. But depending on dq, dp, we can always find a finite NV such that Fiy ~ 1, and the cut-off
does not severely change the bound. Moreover, one can easily check that it is monotonically decreasing in a which is important
in order to do the optimization in « needed for the bound on the smooth min-entropy (7). A plot of the uncertainty relation is
shown in Figure I} Unfortunately, the bound does not scale well for small §.

1l.2.4. Uncertainty Relation for Convex Combinations of Gaussian States.

In order to obtain an improved scaling in § we consider the uncertainty relation under an additonal constraint. Since in general
only Gaussian operations can efficiently been implemented, it is interesting to impose the constraint that the state is a classical
mixture of Gaussian states. Here, it is important that we allow arbitrary and even continuous mixtures of Gaussian states. The
reason is that a coarse-grained quadrature measurement on one mode of a multimode Gaussian state results in a continuous
convex combination of Gaussian states in the remaining modes (and not in a Gaussian state itself). Since conditioning on part of
the measurement outcomes on Alice’s mode is needed to generalize the uncertainty relation from n = 1 to n > 1 as in46 this
is crucial.
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FIG. 1. The plot shows Ay, (blue), AGuuss (orange), Afp (green) and the error correction rate (red) depending on ¢ for n = 10%, e = 107°
and m = 5. We see that the bound under Gaussian constraint is the strongest. The error correction rate (63) is plotted for 2 = 1 and an EPR
state with V' = 3 and Bob’s mode sent through a channel with transmissivity 7 = 0.95 and £ = 0.001.

Theorem 1. Let p4 be an arbitrary and possibly continuous convex combination of Gaussian states . It then holds that

HDt (X|9) Z Bgauss(5) ’ (28)

a—1
N 1 1 1\ « ¢
BGauss((s) - 1—a log 5 (1 + (ﬂ_g) a (29)

Proof. We first assume that p 4 is a Gaussian state. Let us recall that

21— Ha(X10) — 1 /9 (qu +Zpk> (30)

where we use the notation introduced in (TT). Denoting the probability density function of the continuous () measurement by
q(z),1.e., g(xz) = tr(paEg(x)). We then get that

= (/ q(ac)dx) < 5@—1/ q(z)*dx (3D
Iy Iy

which follows directly from Jensen’s inequality. Hence, we find for a normal distribution ¢ with standard deviation o that

where

a a—1 « _ sa—1 1 _
quga /q(x) dr =6 NN (32)

Note that the bound gets very bad if ¢ is much smaller than 4, in particular, exceeding the upper bound of 1 which holds trivially
for ), qj'. We avoid that by simply bounding

1

—_—— 1}. 33
Va(V2re)e-1’ ; (53)

Z ¢ < min{5*!
k

Let us use that the standard deviations of the position and momentum distribution satisfy cgop < 1/2 (h = 1). Without loss
of generality, we can assume that o > 1 / V2. A straightforward calculation then results in

— 504—1

qu + Zpk < mln{m, 1} + min{m7 1}

st — PCESy
<{ Ja@meT (051_1 + (209)” 1) , 00 < \/gaszn/(i

5>t 1
1+ Va@me T 55T , else



Maximizing the right hand side of the equation over all possible og, we find that the maximum is exactly attained for o =
V/7/2at/(2(@=1) /5. Plugging this in we obtain that

o 152(0{ 1)

qu +Zpk§1+ ) P (34)

which finishes the proof for Gaussian states.

Let us now assume that p4 = [, du(y)p(y)pY with (Y, dp) a sigma-finite measure space, p a probability distribution over Y’
and p*) a Gaussian state for any y. It then follows that the () measurement maps p4 to an element of L'(R) that can be written
as pq = [y du(y)p(y)pg, with pf, the Gaussian distribution of the position of p%. The same holds for the P measurement. It

thus follows that
/dcc/ du(y /du / da:pQ a (3%)
Iy

< zk: /Y du(y)p(y) ( /I k dxply(x)) (36)
= /Y du(y)p(y)zk:( /I k dpy(x))* (37)

where the two equalities follow from Fubini’s theorem (since all integrals and sums are bounded) and the inequality from the
convexity of the function z — z®. Now, by the linearity of the integral we obtain the desired result. O

Similar to the majorization uncertainty relation, we get a bound on the smooth min-entropy via

Hfl’lll](X‘aK) Z Aaauss(é) ? (38)
with
1 2
AGauss(0) = B (6) — ——=log =) . 39
Gauss (9) lilclyl;l< Gauss (0) nla —1) 0og 62) (39

Itis easy to see that Bg,,(6) — 1/(a—1) for & — 0. Moreover, we get a significantly better scaling than Af;,;(6) especially
for small J, see Fig. ??. As we will see later, that improvement is important to obtain security in the noisy-storage model.

1.3. Smooth Min-Entropy Uncertainty Relation under IID Assumption

Note that for the previous relations the n-mode states p¥ can have arbitrary correlations between the n modes. Let us now
assume that Bob produces an ensemble of n-mode states according to an independent and identical distribution (iid) over only
m modes such that the state has the form pgng» = (aAme)®"/m, where we assume that n/m € N.

This assumption simplifies the problem since it allows us to use the asymptotic equipartition property (AEP) of the smooth
min-entropy for iid random variables or tensor product states in the quantum case***>Y, The AEP says that for a state psngn =
pf% with H(A), < oo, the smooth min-entropy can be approximated by the von Neumann entropy, i.e.,

4 2
*Hélm(A"|B") > H(A|B), - Tlog (A B),)*[log 5 (40)

where 7j(A|B), = 27 Hmin(AlB),/2 4 oH1/2(AIB)s/2 4 1. Here, H(A), = trpalogpa is the von Neumann entropy and
H(A|B), = H(AB), — H(B), is the conditional von Neumann entropy.
Applying the above inequality to the setting described in Section under the assumption that pgngcn = (04m gem )™/ ™,

we obtain that
1 € n|ign ren 1 m|gm gm m m 2 2
m n €

where (X™), = 2 + 21120 > g(xX™ |9 K™),.



Now we can simply use the uncertainty relation for the von Neumann entropy with classical side information!
H(X™KO =0)+ H(XJ"|KO = 0) > —mlog c(d), (42)

where ¢(8§) = §2/(er) and § = (6; — 1), denotes the complementary basis choice of § = (6;)™ ,. This then implies that

H(X|OK) = zim 3 %(H(X"LU(@ —0) + HOXP' KO =) > " loge(). 43)
6

Hence, we obtain the following uncertainty relation

1

n

1 2
in(9) = 3 Toge(9) — 4y 2 og(n(X™)) o . @

Note that even though the right-hand side still depends on the distribution of X, it is not conditioned on K and Alice can estimate
it. Moreover, in the application to oblivious transfer, we can assume that Alice distributes the average ensemble state, and thus,
knows the distribution over X by herself. Note further that log(n(X™),) = O(m) such that

€
Hmin

(X" K™) > Mip(0) (44)

where

1
inl9) = — 3 loge(9) — O /™). 4o

For comparison with the bound under Gaussian constraint, see Figure|[I]

lll. OBLIVIOUS TRANSFER

We consider a protocol that implements a randomized version of oblivious transfer (ROT) (see, e.g.,123/and 30). Alice has no
input and obtains as output two random strings sg, s; € {0, 1}, and Bob has an input ¢ € {0, 1} and obtains a string 5, = s,.
This randomized OT protocol can then be turned into usual oblivious transfer by adding a simple classical communication step
(see, e.g.,130). We start with a precise definition of the correctness and the security of ROT. In order to ensure composable
security, we adopt the security definitions from [23) but allow our protocol to abort for clarity of exposition. However, it is
straightforward to extend our protocol along the lines of [23|to deal with the general case.

In the following, we denote random variables by capital letters, e.g, Sy, S1 for Alice’s output. The uniform distribution of a
random variable X is denoted by 7x and the classically maximally correlated state of two random variables X and Y with same
range by Qxy, ie., Qx = 7x, Qy = 7y, and Qx|y—, = 0, ,. Moreover, we set [n] = {1,2,...,n} and Z = 1 — x for any
binary variable x.

Definition 1. A protocol between two parties Alice and Bob that takes input ¢ € {0, 1} from Bob and outputs on Alice’s side
two bit strings Sy, Sy in {0, 1} and on Bob’s side Sp is called an (ec, € 4, € g )-ROT protocol if the following holds.

e The protocol is ec-correct, that is, if the protocol does not abort and both parties follow the protocol, then the output of
the protocol ps,s, s, c satisfies

lpses:S81c=c = Ts: ® Qs.55l1 < €c - (47)

e The protocol is € a-secure for Alice, that is, if the protocol does not abort and Alice follows the protocol, then for any

strategy of Bob with output ps, s, p:, where B’ denotes Bob'’s register at the end of the protocol, holds that there exists a
random variable D with range {0, 1} such that

lpss,sppB — Tsy @ psppBrlll < €4. (48)

e The protocol is € g-secure for Bob, that is, if the protocol does not abort and Bob follows the protocol, then for any strategy

of Alice with output pass,,c there exist random variables Sy, S such that p ars; 515, c satisfies that Pr[Y # S.| < ep

and

parsysyjc=0 — parsysyjo=1ll1 < €B. (49)



lIl.1. CV ROT Protocol

We consider a generalization of the ROT protocol in 30 for continuous-variable encoding. But since the measurement out-
comes of Alice and Bob do not perfectly match even if both chose the same basis, some error-correction information has to
be exchanged. We first state the entanglement-based version of the protocol and then describe how this can equivalently be
implemented as a prepare-and-measure scheme.

1) Alice (or Bob) distributes n EPR states (two-mode squeezed states) and sends from each one mode to Alice. Both then
perform coarse-grained measurements in random independent basis choices 64,05 € {0,1}" (see Section for the
notation) obtaining measurement outcomes X and Y.

2) They wait for a fixed time At.

3) Alice sends Bob her basis choice 64. Bob defines the sets I. = {i € [n]|#%, = 6%} and I; = [n]\I. and sends I, I
to Alice. For simplicity we assume that |Iy| = |I;| = n/2, as Alice aborts if this is not approximately true (see> for a
rigorous treatment).

4) Alice forms the strings Xy = (X%);cs, for k = 0,1. She then computes individually for X, X; error-correction syn-
dromes Wy, W1, and chooses random two-universal hash functions gg, g; to a bit string of length log 1/¢¢. Alice then
sends Wo, W1, go, 91, 90(X0), g1(X1) to Bob who corrects his string Y, = (Y%);c;. according to W, to obtain Y. He
then checks that g.(X.) = g.(Y.) and aborts otherwise.

5) Alice chooses random two-universal hash functions fy, f1 to an ¢-bit string and outputs s, = fx(Xx), k = 1, 2. She then
sends fo, f1 to Bob who outputs f.(Y/).

Let us first note that conditioned on the measurement of the sender, the state of the receiver is given by a squeezed state displaced
according to a normal distribution. Hence, the above entanglement-based protocol is completely equivalent to a prepare-and-
measure protocol in which the sender simply prepares the squeezed states and displaces them according to the corresponding
normal distribution.

Intuitively, correctness is ensured since the outcomes of Alice and Bob are correlated when measured in the same basis. By
sending sufficient error-correction (EC) information, i.e., fgc = nH(X|Y"), Bob can recover Alice’s string. Security for Bob
follows since he only sends the information [y, I; which is independent of ¢ and can be formalized as in 23, Security for Alice
is more delicate to prove. In fact, if malicious Bob has a perfect quantum memory that can store the n modes over the time At,
he can wait until Alice sends her basis choice 6 4 and measure accordingly. Thus, he obtains both sy and s;. But as we show in
the following, if Bob’s memory device is noisy, he will not have enough information to recover both of the strings.

From a theoretical point of view, the protocols where Alice or Bob distributes the EPR pairs in step 1 are completely equivalent.
Since, the amount of error-correcting information is smaller if Bob takes the role of the sender the theoretical trade-off turns out
to be better. But from a practical point one can certainly argue that it is favorable if Alice distributes the states. The reason is
simply that certain memories are probabilistic and Bob could distribute the states conditioned on successfully storing his mode.

lll.2. Security Analysis
Correctness

ec-correctness follows directly from the definition of the protocol. Namely, if g.(X.) = g.(YY) is satisfied we know due to
the properties of two-universal hash functions that the probability that Sp = S, is €c.

Security for Bob

The security for Bob follows from similar reasons as in®3.

Security for Alice

An arbitrary attack of Bob can be modeled as follows (see, e.g.,[23)). First, Bob applies an encoding strategy to his n modes B™
mathematically described by M = { M}, where M, is a non-normalized quantum channel from the Hilbert space L?(R)®™
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to Hq,, such that ), M, is a normalized quantum channel. We consider M as a map that takes a state pg~ in B™ and outputs
a classical quantum state

prQ. = Y k) (k| © Mi(ppn), (50)
k

on K and Qj,. Bob then stores the quantum part (;,, in a quantum memory described by a quantum channel F : S(Qi,) —
S(Qou)- Here, S(Qin) denotes the state space corresponding to H, , i.e., density operators on ¢, with unit trace. After time
At, Bob obtains the basis information 6 4, and subsequently, the error correction syndromes W = (W,, W) together with the
hash functions H = (Fy, F1, Gy, G1) and the check values C' = (Go(Xp), G1(X1)). Hence, the state shared by Alice and Bob
at the end of the protocol is given by pg, s, Qo B> Where By = 04 KW HC' are Bob’s classical registers.

The goal of the security analysis is to show that there exists a random variable D such that

195550 DQuBa = TS5 @ PSpDQuBalll < €a. (51)
The privacy amplification lemma®? against infinite-dimensional quantum adversaries* tells us that (51)) is satisfied if we choose
£ equal or lower than

He!

min(XD|SDDQ0uthl) - 210g (52)

€q—4dey’
with €; > 0 arbitrary such that e 4 > 4e;.

Hence, we have to lower bound the smooth min-entropy. For this purpose we follow similar arguments as in3“?, Therein, a
central ingredient is the connection between min-entropy of a state px z 7 (q,,) With X Z classical and F a quantum channel from
Qin t0 Qout = F(Qin), and the success rate R of classical coding sent through F given by

1
Plee(nR) = sup %> tx(DiF (pr)) (53)
Pk, D A

where the supremum runs over ensembles of code states (py,) 7%, and POVM’s (Dy, )2, used to decode the classical information
sent through the channel. It has been shown in[23|that (see Lemma [2)

Hl (X|F(Qu)Z) = —log Plee (| Hinin(X12), — log 1/¢2]). (54)
Applying the above inequality to the smooth entropy in (52)) and using basic properties of the smooth min-entropy**2, we
obtain
Hrenlin(XD|SDDQoutBC1) > Hrenlin(XD|DQouthl) — log |SD|
> —log (Piiec ([ H7n(Xp|DBa) — log ———3 )
(e1 —€2)
—log|Sp|.
Using that log |Sp| = ¢, we obtain together with that is satisfied if we choose ¢ smaller or equal to
1 1
- =1 e ([HE (Xp|DBy) — 1 — log ————. 55
2 Og (Psucc(l_ Hlll‘l( DI Cl) Og (61 o 62)2J) Og €A — 461 ( )

The goal of the next part is to lower bound the smooth min-entropy H;% (Xp|DBg). For that we use the min-entropy

splitting theorem??, (see also Lemma 3), which tells us that there exists a random variable D such that

Hiin in(XoX1[Ba) — 1. (56)

m

1
(Xp|DBy) > §H€

Recall now that Bob’s classical register By is given by § 4 KW HC' such that we can bound

Hrilin(XOX1|Bcl) > anin(XOXI‘QAK) — log |W| — log ‘Cl
1
2 anin(XOXﬂeAK) - KEC — 210g —,
€C

where we defined /g as the amount of bits sent in the error correction, and used that the hash functions are drawn independently
at random and that C' is the check information for error correction.
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Now, we can bound the smooth min-entropy HY ;. (X¢X1|604K) can be bounded by the uncertainty relations in Section [[I} In
the following, we say that the measurement setup satisfies an uncertainty rate A\ (n) if under the given assumption the uncertainty
relation
min(X[K0) = nAc(n), (57)
where n stands for the number of rounds and X = Xy.X;.
Concluding the above discussion we arrive at the following bound on the length of the string that enables security for Alice.

Theorem 2. Let Alice’s measurement setup has an uncertainty rate \.(n) and let us assume that the total number of bits for
the error correction is Lgc. Then an ec-correct protocol as defined in Section allows the oblivious transfer of { bits with
ea-security for Alice if

0> ~L1ogPL (15 (A () — frc — 2l0g ) Lo 58)
2 2 €c

(€1 —€3)? - H)

— log (59)

€4 —4er’
where €1, €5 > 0 arbitrary such that € 4 > 4e; > 4eo.

Note that in the case that the left-hand side of (38) is negative, an implementation of the ROT protocol is not possible.

Let us now assume that 7 = £®" with v > 0, and that the classical capacity of £ satisfies a strong converse. That
is, the success probability Py,..(nR) for sending classical information at a rate R bigger than the classical capacity C(E) is
exponentially suppressed

Pliee(nR) < e MECE) (60)
Plugging this into (58)), we find that in order to obtain a secure protocol for sufficiently large n the condition
1/2(/\52 —TEC) > I/C(S) (61)

has to be satisfied, where where rgc = fgc/n is the error correction rate.
A necessary condition is thus

1/2(Ae, —TEC) > 0. (62)
From the Slepian-Wolf theorem®?, we know that in the asymptotic limit the error-correction rate is given by the conditional
Shannon entropy H(X|Y), where Y denotes Bob’s measurement outcomes measured in the same basis as Alice. In order to
account for the correction due to a finite number of communication rounds, we introduce the error correction efficiency 5 < 1
and the corresponding rate as

rec = H(X) - BI(X :Y). (63)

Note that 5 = 1 corresponds to the asymptotic limit. Recent advances in error correction codes for correlated Gaussian variables
allow for efficiencies 8 > 0.95353

Let us now analyze the quantity in (62)) for the different uncertainty relations derived in Section [l which are plotted in
Figure[2] In the following, we assume that the EPR state is distributed by Alice and that its covariance matrix is parametrized by
the variance V, the transmissivity of Bob’s mode 7 and the excess noise £&. The corresponding covariance matrix is then given
by

VI TV -1)Z
( VD2 Vs(r ol ) (4

with [ the identity in C2, Z = diag(1,—1) and Vz(7,&) = nV + (1 — 7)1/2 + 7&. Since large distances are not particularly
required for the usefulness of the OT protocol, we assume in Figure 2]that 7 = 0.95 and £ = 0.001.

We then see that for the majorization uncertainty relation which holds without any additional assumptions, there is only a
very limited range of § for which (62) is positive and it is always smaller than 0.1. As this value has to be larger than the
classical capacity of the memory channel, we have to assume a very low capacity of Bob’s memory channel which is problematic
especially for CV systems.

The situation looks better for the uncertainty relation obtained under additional assumptions. The best performance is obtained
under the assumption that Bob’s quantum memory can be described by (mixtures) of Gaussian operations, see Theorem [I]
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FIG. 2. The plot shows the difference (62)) for Ay, (blue), AG,.s (orange), Ajip (green) depending on 6 for n = 108, e =102 and m = 1.
The error-correction rate (63) is plotted for 5 = 1 and an EPR state with V' = 3 and Bob’s mode sent through a channel with transmissivity
7 =0.95and £ = 0.001.

Although not clearly seen in Figure [2| the difference goes to —oo in the limit 6 — 0. Under the iid assumptin, Section [IL.3]
we find a slightly smaller value for (62) than in under the Gaussian constraint. However, the quantity goes to a constant value
for small enough ¢ since the error-correction rate scales similarly in ¢ as the bound A\ (), namely, like —logd. In fact for
sufficently small § we can approximate the error correction rate as r = H(X|Y) ~ h(X|Y) — logd, where h(X|Y) is the
differential conditional Shannon entropy and we set 5 = 1. Hence, for large n we find that

1/2002 — rec) ~ log VeIl — h(X|Y) — O(m? %)
Y
= log VeIl — log (\/271'6‘/)(“/{)() - O(m?/ %)
Y

1 VY 2 m>
—log [ ——2Y ) -0 my
Og(ﬁVXVXY> (m n

Thus, we need that the conditional variance is small enough such that

Vx 1
Vyy — < —. 65
X\Yvyfﬂ (65)

ll.3. Application to Bosonic Gaussian Memory Channels

Let us now consider the security of the ROT protocol if Bob’s memory channel (or a part of it) can be modeled by a phase-
insensitve Gaussian channel that acts on a single-mode covariance matrix as

'—TTTT + N, (66)

where T = diag(\/t,v/t) and N = diag(v,v) such that v > 0 and v > (¢ — 1). In the following, we denote the corresponding
quantum channels by & ,,.

For phase-insensitive Gaussian channels a strong converse has recently been established®’=?. Note first that the classical
capacities for bosonic channels are only bounded under a mean-energy constraint, i.e., if the average photon number NV,, of the
average code state is finite. Then, the classical capacities are given by>#>>

C(Euw|Nay) = g(tNwy + (t+v = 1)/2) — g((t+v—1)/2), (67)

where g(z) = (z + 1) log(z + 1) — zlog z.

A slightly stronger restriction than only an average-photon-number constraint has to be imposed in order for a strong-converse
bound to hold*”. Namely, a constraint on the maximal photon number has to hold. More precisely, let p" be the average channel
input for n chSannel uses of &, ,,, then we say that a family of codes {p" },, satisfies a maximal-photon-number constraint (MPNC)
with Nyayx if*!

tr (N p”) = 1= 6(n) (68)

where 11,

max

denotes the projector onto the subspace with at most n.Ny,,x photons and §(n) decays exponentially in 7.



13

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. The plots show when condition (71) is satisfied with equality for AG,,,. On the horizontal axis the transmissivity 7 is plotted and
the vertical axis corresponds to the mean photon number Ny of the thermal noise channel (solid) and the noise variance Vi (dashed) for
Nmax = 30 and v = 1,1/3,1/5 (from left to right). For the solid line we set Vi = 2 and for the dashed lines Ny = 1. The EPR state
has variance V' = 3 and Bob’s mode is subjected to transmissivity 7 = 0.96 and £ = 0.001. Moreover, error-correction efficiency is set to
B=0.96,n =10% and e = 107°.

The strong converse theorem for any phase-insensitive channel £ from [39 then says that the success probability for the
transmission under the MPNC decays as

Plice(NR|Nipax) < 27 B-CENma) =01 4 gnd2 4 53 (n) (69)

where 1, 02 are arbitrary small constants and d3(n) = \/5(11) ++/0(n) + d3(n) with §(n) given in (68) and d3(n) is exponen-
tially decreasing in n.
In order to apply the above result to the noisy-storage model, we assume that Bob’s memory channel is given by

F=govm (70)

where £ is a phase-insensitive Gaussian one-mode channel that works only properly if the channel input Q);, satisfies the MPNC
with Ny ax. Otherwise, we assume that the channel acts like a constant channel and the capacity is equal to 0.
We then obtain from Theorem [2] that if the condition

2 O (m0) — frc/mo)) > vO(€]Na) )
is satisfied for an ng, we can find an appropriate Ny > ng such that for any n > Ny, the length of the bit string in the ROT
protocol scales like £ & 1(% (A, (o) — lec/n0)) — vCO(E|Ninax)-

111.3.0.1. Thermal Noise Channel with Additive Gaussian White Noise. The thermal channel can be modeled as mixing the
mode by a beam splitter with transmissivity n with a thermal state with average photon number Ny,. In terms of the parameters
t,v in (66), it is expressed by t = nand v = (1 — n)(1 + 2Ny,). And if we include additional additive Gaussian noise V;,, the
parameters are t = pand v = (1 — n)(1 + 2Ny) + V..

In Figure 3] @] and [5} we show when condition is satisfied with equality. Hence, the left-hand side of the plots specifies
the condition on Bob’s memory for which security in the noisy-storage model can be obtained. We emphasize that security with
coherent states can be achieved under Gaussian assumption, see Figure ]

IV. CONCLUSION

We have presented an OT protocol for CV systems that provides security in the noisy storage model. The protocol is practical
and uses similar resources as CV QKD. Under the constraint that Bob uses a Gaussian memory attack, an implementation with
coherent states can provide security. As a key ingredient, we analyze and derive uncertainty relations for CV systems, which
can be used along similar lines to analyze the security in the noisy-storage model for other protocols such as bit commitment or
secure password-based identification3%3, We leave as open problem the task of finding optimal uncertainty relations without
any further assumptions. It is possible such relations can be obtained by linking security again to the quantum capacity of
the storage device??*, requiring however more sophisticated techniques. Such a result would also pose a challenge to find an
explicit strong converse for the quantum capacity for bosonic channels.
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FIG. 4. The plots are exactly the same as in Figureexcept that it is for coherent states (V = 1/2) and v = 1,1/6, 1/12 (from left to right).
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FIG. 5. The plots show when condition (7T) is satisfied with equality for Afip. On the horizontal axis the transmissivity 7 is plotted and the
vertical axis is the means photon number Ny, of the thermal noise channel (solid) and the noise variance Vv for the additive Gaussian noise
for (v,m) = (1,1),(1/8,1), (1/8,10) (from left to right). For the solid line we set Viy = 2 and for the dashed lines Ny, = 1. The other
parameters are as in Figure[3]
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Appendix A: Technical Lemmas

Lemma 1. Let X and Y be possibly infinite classical systems. It then holds for any 1 < o < 2 that

2
T loge—Q. (AD)

min

1

min (X[Y) > Ho(X]Y) —
o —
Proof. The lemma has been shown for finite-dimensional systems in*>. An easy way to show it in the infinite-dimensional case

is by means of the approximation result from>?. This allows us to obtain

(XY, > H(X|Y)pyop, (A2)

min min

1
Z HQ(X‘Y)pkak — a—1 IOg (A3)

(e—9)?

where P, = PkX ® P,g’ is a projector onto a finite-dimension subspace such that PypPj is d-close to p. Note that such a
projection always exists for any 6. Next, we use that H,(X|Y)p,,p, = Ha(X|Y), for k — oo. This follows simply since
all the sums involved in the definition of the a entropy converge absolutely, and thus, can be rearranged. This then leads to the
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conclusion that

1 2
He. (X|Y),>H,(X|Y), — 1 A4
mln( | )P = ( | )P a—1 og (6—5)2 ( )
holds for any § > 0. And thus in the limit § to 0 we obtain the desired result. O

The following statement has been shown in®¥ and generalizes straightforwardly to infinite dimensions using the same strategy

as in the proof above based on the approximation theorem inP".

Lemma 2. Let px k¢, be a state of classical random variables X K correlated with a quantum system Qi, and F a quantum
channel from Qi t0 Qou, and set ke o = |HS, (X|K), —log 1/€”?]. Then, it holds that

HE (X F(Qin)K) > —10g Pauce(kes €') . (A5)

min

The technique of min-entropy splitting is due t0°®, and used as the following Lemma in®”, which generalizes by a simple
application of the approximation in°" to arbitrary alphabet sizes.

Lemma 3. Let X, X1,Y be classical random variables. Then there exists a random variable D with range {0, 1} such that

min

1
fin(Xp|DY) > innin(XOXﬂY) -1 (A6)
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