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Abstract

The private capacity gauges the practical value of quantum channels for secure commu-
nications. Unfortunately, this quantity is given by the infinite regularization of the private
information. Can we stop the regularization at some finite universal constant independent
of the channel and still evaluate the capacity with arbitrary precision? Here we show that
this is not the case.

The private capacity of a quantum channel [1] has a clear operational interpretation. It
quantifies the maximum rate at which the sender, Alice, can send private classical communi-
cation to the receiver, Bob. This capacity also characterizes the optimal rates for secret key
generation. Hence, a better understanding of this quantity would allow to evaluate precisely
the usefulness of quantum channels for secure communications. Little is known about private
capacity of individual channels. For instance, the private capacity of Gaussian channels [2]
remains open. Beyond the pure loss channel [3] only lower bounds on the private information
of a single use are known.

Formally, the private capacity is given by the following regularized quantity:

P(N ) = lim
n→∞

1

n
P(1)(N⊗n). (1)

where P(1)(N ) is the private information of the channel.
Despite the relevance of the private information, we still understand very little about its

behaviour when the communication channel is used many times. It is shown in [4, 5] that
P(1)(N ) is superadditive for a small finite number of channel uses, although the magnitude of
this effect is quantitatively very small.

Here we show that private information can be strictly superadditive for an arbitrarily large
number of uses of the channel. This implies that there does not exist a universal constant k,
independent of the channel, such that the private information regularized after k uses already
gives the private capacity. More precisely, we prove the following theorem:

Theorem 1. For any n there exists a quantum channel Nn such that for n > k ≥ 1:

1

k
P(1)(N⊗k) < P(N ). (2)

In the following we introduce our channel construction and give a sketch of the proof.
Channel construction. We start with the definition of the switch channels:

N SA→SB(ρSA) =
∑
i

PS→S
i ⊗NA→B

i (ρSA), (3)
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Figure 1: The channel has two input registers the control register S and the data register A.
The control register is measured in the computational basis and depending on the output either
the erasure channel Ẽnp,d or n copies of the d-dimensional rocket channel are applied.

which consists of two input registers S and A of dimensions d and n respectively. Register S
is measured in the standard basis and conditioned on the measurement outcome i a component
channel Ni is applied to the second register. The computation of P(1)(N ) when N is of the
form (3) can be simplified; it suffices to restrict inputs to a special form.

There are two types of channels which we will use in place of Ni. The first channel is the
erasure channel:

EA→B
p,d (ρA) = (1− p)ρB + p|e〉〈e|B, (4)

where |e〉〈e| is the erasure flag and d the dimension of the input register A.
The second channel that we use alongside Ep,d is a d-dimensional ‘rocket’ channel, Rd [6]. It

consists of two d-dimensional input registers A1 and A2 and a d-dimensional output register B.
A1 and A2 are first subject to a random unitary and then jointly decoupled with a controlled
dephasing gate. Then, the contents of A1 becomes the output of the channel and the contents
of A2 is traced out. Bob also receives the classical description of the unitaries which acted on
A1 and A2. Since dephasing occurs after the input registers have been scrambled by a random
unitary, it is very hard for Alice to code for such channel, hence it has a very low classical
capacity: C(Rd) ≤ 2.

Our switch channel construction has the following form:

Nn,p,d = P0 ⊗Rn
d + P1 ⊗ Ẽnp,d. (5)

That is, it allows Alice to choose between Rn
d = R⊗nd and Ẽnp,d = Ep,d⊗E1,d2n−1 ; a d-dimensional

erasure channel padded with a full erasure channel to match the input dimension of Rn
d (see

Figure 1).
Proof sketch. The first step of the proof consists in showing a strict upper bound on the

private information. In general, to upper bound the private information of a switch channel we
need to optimize over all the possible different choices of the components. After some careful
algebra we can show that there exists a range of p and d such that the private information of k
uses of the channel Nn,p,d is strictly upper bounded by:

1

k
P(1)(N⊗kn,p,d, ρ) <

k

k + 1
(1− p) log d, (6)
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Figure 2: The first part of the protocol consists sending a state maximally entangled between
the different inputs of the rocket channel and an external reference.

with k < n− 2. The second step of the proof is to show that the right hand side of (6) can be
achieved by some concrete input on k + 1 uses of the channel. The idea behind the input is to
perform a ping-pong trick used in [7]. Alice, the sender, prepares a maximally entangled between
an external reference and the inputs of the rocket channel (see Figure 2). The inputs to the
A11, A21, . . . , An1 registers get randomly dephased by the rocket channel and almost no privacy
can be extracted. However, if Bob, the receiver, had access to the registers R12, R22, . . . , Rn2

he would be able to undo the dephasing and distill maximally entangled states between the
registers R11, R21, . . . , Rn1 and B1, B2, . . . , Bn. He has no access to R12, R22, . . . , Rn2 but Alice
can send these registers to him through the erasure channel. Whenever one register reaches
Bob, he can distill a maximally entangled state. The analysis of this protocol shows that the
right hand side of (6) is achievable.

Discussion. Here, we prove that it is not possible to compute the private capacity with
arbitrary precision if we stop the regularization after a constant number of uses (with the
constant being channel independent). However, there are channels for which we know that a
single use suffices to compute the private capacity; and we might conjecture that there should be
channels for which two or three uses suffice. What are the differences between these channels?
The answer to this question, and more generally, to the question of what properties a channel
has to verify such that its capacity can be computed after a finite regularization are wide open.
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