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Is it possible to obtain provable random numbers from an untrusted source? This question, if it
can be answered affirmatively, is of great importance in cryptography, where random numbers are
ubiquitous and it is necessary to guard against highly intelligent adversaries. Bad randomness is
a problem: researchers have broken a large number of RSA keys on the internet due to insufficient
randomness [8, 9].

There are current solutions which generate random numbers from a physical source — possi-
bly in combination with pseudorandom generators — but these solutions require a level of trust
in the randomness of the source. NIST Special Publication 800-90B [1], which is commonly used
and prescibes methods for testing sources of randomness, says the following:

The development of entropy sources that provide unpredictable output is difficult, and providing
guidance for their design and validation testing is even more so. The testing approach defined in
this Recommendation assumes that the developer understands the behavior of the entropy source
and has made a good-faith effort to produce a consistent source of entropy.

The question is whether random numbers can be generated even in the absence of good faith.
Quantum technology offers a unique opportunity to address this question: Bell inequality vio-
lations are proofs of quantum, and therefore random, behavior. This talk will cover the current
results on untrusted-device randomness expansion and give a primer on the tools that we have
used in our work [10, 11].

In 2006, Roger Colbeck proposed (without proof) a protocol for randomness expansion from
untrusted devices [3, 4]. The scheme involves repeatedly testing the devices with a Bell inequality
and, if a violation is achieved on average, using the outputs of the devices to create randomness.
We will use a version of such a protocol from [5], [14] which is shown in Figure 1. The protocol
includes adjustable parameters: N (an integer) and δ, s, t (positive real numbers).

After Colbeck’s thesis, papers appeared on similar protocols [12, 13, 7, 5] showing that the
output string at the end of the protocol is indeed nearly uniformly random, but they showed this
only against a classical adversary (i.e., an adversary who does not have quantum memory). [14]
took a major step forward (continued in [6]) by showing security against a quantum adversary,
but their protocol was not robust (i.e., its abort-condition is exact rather than approximate, so an
honest-but-noisy device will probably abort). The challenge we addressed in our work is to prove
robustness and security against a full quantum adversary. This problem led us to some new tools
and interesting mathematics.

Proving security for Protocol R comes down to showing that, after step 4 in Protocol R, the
collected outputs of the device, which we denote by Y, contains at least tN extractable bits—even
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A classical user Alice, possesses a quantum device D consisting of multiple components
D1, . . . , Dn, and also an initial random string X. A nonlocal game G is chosen.

1. Alice simulates a biased (δ, 1− δ)-coin flip (using X) to produce a bit g.

2. If g = 0, then a fixed input sequence a is given to D and the outputs are recorded.

3. If g = 1, then the game G is played with D and the outcome (“win” or “lose”) is recorded.

4. Steps 1− 3 are repeated (N − 1) more times.

5. If the total number of game-wins was less than sδN, the protocol aborts. Otherwise, the
protocol succeeds, and a classical randomness extractor is applied to the recorded outputs
to produce tN bits (the final result).

Figure 1: Protocol R

in the presence of a quantum adversary. How do we measure the number of extractable bits? A
canonical measure of randomness of a state ρ is the von Neumann entropy: S(ρ) = −Tr[ρ log ρ].
We cannot use this measure directly—it is intended for the IID setting and will only guarantee
extractable bits in the case where multiple identical copies of the state ρ are available. But consider
instead the quantity

H1+ε(ρ) = −1
ε

Tr[ρ1+ε], (0.1)

which tends to S(ρ), for fixed ρ, as ε tends to zero. This is the Renyi entropy of the eigenvalues of
ρ. If we can show a lower bound on this quantity, then a lower bound on the number of extractable
bits of ρ follows (with a penalty term that increases as ε→ 0).

One of the central insights of our work is that randomness can be proved via certain known
properties of the operator function M 7→ Tr[M1+ε] — or equivalently, properties of its close cousin,
the Schatten norm:

‖M‖1+ε =
(

Tr[M1+ε]
) 1

1+ε
. (0.2)

Using an older result [2] about the geometry of ‖·‖1+ε, we prove the following, which compares
the state-disturbance caused by a measurement to the amount of randomness produced by the
measurement.

Proposition 1. Let ρ be the initial state of D, and let {R0, . . . , Rn} be the measurement performed for
input a (which we assume to be projective) and let ρ′ = ∑i RiρRi denote the post-measurement state. Then,

‖ρ′‖1+ε

‖ρ‖1+ε

≤ 1− ε

2n
·
‖ρ′ − ρ‖1+ε

‖ρ‖1+ε

+ On(ε
2). (0.3)

We can interpret this proposition by saying that there are two possibilities: either ρ was close to
the post-measurement state ρ′ to begin with, which means that the device approximates a device
that yields classically-predictable outputs on input a, or there is a positive lower bound on the
amount of randomness that was produced by the measurement ρ 7→ ρ′.

2



This proposition can be used as a basis for security results. Let us say that a continuous in-
creasing real-valued function f is a rate curve for the game G if any values s, t satisfying t < f (s)
make Protocol R secure. In other words, a rate curve lower-bounds the rate of extractable bits
produced in Protocol R, as a function of the abort threshhold s. Let WG denote the supremum of
all winning-probabilities for G among quantum devices, and let WG,a denote the supremum just
among those that give deterministic outputs on input a. Our main results can be summarized as
follows.

Theorem 1. Let G be a nonlocal game. Then:

1. There exists a rate curve fG : [0, 1]→ R for G such that f (s) > 0 for any s > WG,a.

2. If G belongs to the class of binary XOR games that are strong self-tests, then there exists a rate
curve f ′G : [0, 1]→ R which satisfies f (WG) = 1.

Assertion 1 in the theorem applies to any nonlocal game G. Clearly Protocol R becomes inse-
cure for any abort threshhold below WG,a, so the condition on the positive values of fG is in fact
the best possible. Assertion 2 applies to a specific class of games which includes the CHSH game
and the GHZ game (see [11]) and asserts that there is a rate curve that tends to 1 as s tends to the
optimal score.

Both results are proved using an extensive inductive argument—roughly speaking, we show
that the (1 + ε)-Schatten norm of the state of the device D taken together with the outputs de-
creases exponentially with N, and this implies a lower bound on the number extractable bits pro-
duced at step 4.

Let us consider what these assertions imply in the case of the CHSH game, shown in Figure 2.
An elementary proof shows that WCHSH,00 is equal to 0.75, while the optimal quantum score for
CHSH is 1

2 +
√

2
4 = 0.853 . . .. Our result implies that any score threshhold s between these two

quantities yields secure randomness expansion — a noise tolerance of 10.3%! Meanwhile, if s
approaches 1

2 +
√

2
4 then the bit-rate t can approach 1.

We note that by choosing δ to be appropriately small with respect to N, we can execute Protocol
R with only a polylogarithmic seed—thus, it exponentially expands the seed.

O1 ⊕O2 = 0 O1 ⊕O2 = 1
I1 I2 = 00 win lose
I1 I2 = 01 win lose
I1 I2 = 10 win lose
I1 I2 = 11 lose win

Figure 2: The two-player CHSH game. (I1, I2 = inputs, O1, O2 = outputs.)

Summing up, it is possible to produce true randomness from a device that is both significantly
noisy and untrusted, and the only assumption is non-communication. Even a computationally
all-powerful adversary with quantum memory cannot break the security. This approach provides
a compelling alternative to the existing solutions for random number generation.

It would be interesting to explore whether and how the techniques above can be applied to
other cryptographic tasks — they can already be applied, for example, to untrusted-device QKD
[11]. We are also interested in refining the simple model used above (i.e., where each component
is a single black box, and noise is measured by only one quantity) to a more realistic model, which
could yield a theory more directly amenable to experiment.
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