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Abstract

In this paper, we present a hybrid encryption scheme that is chosen ciphertext secure in the

quantum random oracle model. Our scheme is a combination of an asymmetric and a symmetric en-

cryption scheme that are secure in a weak sense. It is a slight modi�cation of Fujisaki and Okamoto's

transformation that is secure against classical adversaries.
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Motivation: The interest in verifying the security of cryptosystems in the presence of a quantum adver-
sary increased after the celebrated paper of Shor [Sho97]. Shor showed that any cryptosystem based on
factoring problem and discrete logarithm problem is breakable in the existence of a quantum adversary.
Also, many e�cient classical cryptosystems are proved to be secure in the random oracle model [BR93]
and many of them still lack equivalent proof in the quantum setting. Therefore to construct an e�cient
cryptosystem secure against quantum adversaries, even if we �nd a cryptographic primitive immune to
quantum attacks, we may have to consider its security in the quantum random oracle model in which
adversary has quantum access to the random oracle.

Fujisaki and Okamoto [FO99] constructed a hybrid encryption scheme that is secure against chosen
ciphertext attack in the random oracle model. Their scheme is combination of a symmetric and an
asymmetric encryption scheme using two hash functions where the symmetric and asymmetric encryp-
tion schemes are secure in a very weak sense. However, their proof of security works against a classical
adversary and it is not clear how one can �x their proof in the quantum setting. Following, we mention
the parts of the classical proof that may not follow against quantum adversaries. The classical proof uses
the record list of random oracles to simulate the decryption algorithm without possessing the secret key of
the asymmetric encryption scheme. In the quantum case, where adversary has quantum access to random
oracles and submits queries in superpositions, there is no such a list. Also, the classical proof uses the fact
that changing output of random oracle on one random input does not make it distinguishable from the
original random oracle and this may not occur in the quantum case as long as adversary can query the
random oracle in superposition of all inputs and see all corresponding outputs in one query. Finally, the
classical proof uses the fact that �nding a collision for a function whose outputs have a high min-entropy
is di�cult with classical access to the function and polynomial number of queries. However, this may
not happen when adversary has quantum access to the function. Consequently, the quantum security of
the scheme is left as an open problem in the related works of Boneh et al.[BDF+11] and Zhandry [Zha12].

Our Contribution: We modify the hybrid encryption scheme presented by Fujisaki and Okamoto
using an extra hash function. We prove that our scheme is indistinguishable secure against chosen
ciphertext attack in the quantum random oracle model. For message m, the encryption algorithm of our
scheme, Enchypk , works as follows:

Enchypk(m; δ) =

(
Encasypk

(
δ;H

(
δ, EncsyG(δ)(m)

))
, EncsyG(δ)(m), H ′(δ)

)
where pk and sk are the public key and the secret key of the asymmetric encryption scheme. Encasypk

and Encsysk are the asymmetric and symmetric encryption algorithms respectively. δ is a random element

∗Full paper: http://www.cs.ut.ee/~unruh/qro.pdf

1

http://www.cs.ut.ee/~unruh/qro.pdf


from message space of the asymmetric encryption scheme. H, G and H ′ are random oracles with proper
domain and co-domain. The asymmetric encryption scheme is One-Way secure, that is, adversary can
not decrypt the encryption of a random message. The symmetric encryption scheme is One-Time secure,
that is, adversary can not distinguish between encryption of two messages when a fresh key is used for
every encryption. In addition, the asymmetric encryption scheme is well-spread in which any message
can lead to at least 2ω(logn) potential ciphertexts.

Following, we present an overview of our quantum security proof and explain how we overcome the
challenges that appear in the quantum case. In the security proof, we introduce a sequence of games and
compute the di�erence between their success probability. The �rst game presents the chosen ciphertext
attack. Let (m0,m1) be the challenge message and (e∗, c∗, d∗) be the challenge ciphertext where e∗ is
the asymmetric encryption of δ∗ that is chosen randomly from the message space of the asymmetric en-
cryption scheme, c∗ is the symmetric encryption of mb using key G(δ∗) and d∗ is output of H ′ on input
δ∗. In the second game, we change the decryption algorithm. The new algorithm outputs ⊥ if the �rst
coordinate of the ciphertext is e∗. We show that the di�erence between the success probability of these
two games can be bounded by the probability of �nding a quantum collision for a function with a speci�c
min-entropy. Here we use the existing result to �nd a quantum collision for non-uniformly distributed
functions presented in [ETTU15]. Note that we use the well-spread assumption of the asymmetric en-
cryption scheme to show that the bound is negligible. In the third game, we use a random key from the
key space of the symmetric encryption scheme to encrypt mb and also replace the third coordinate of
challenge ciphertext with a random element chosen from the message space of the asymmetric encryption
scheme. Now, we can obtain an upper bound for the di�erence between the success probability of the
second game and the third game using the One-way to Hiding Lemma presented in [Unr14b]. Unruh gives
an upper bound for any quantum adversary that is trying to distinguish between two random oracles
that have di�erent output on only one random input. We only need to show that the upper bound is
negligible since the success probability of the third game can be reduced to the One-Time security of the
symmetric encryption scheme for the reason that the key is chosen randomly. Therefore, we introduce the
fourth game such that the success probability of the game is the upper bound obtained by the One-way
to Hiding Lemma. In the �fth game, we replace the random oracle H ′ with a random polynomial in
order to force the adversary to submit which input of δ has been used to obtain the ciphertext. This
can be done due to result by Zhandry [Zha12] that shows a random oracle is indistinguishable from a
2q-wise independent function where q is the number of quantum queries that adversary makes to the
oracle function. Note that random polynomials of degree 2q− 1 are 2q-wise independent. By calculating
the roots of polynomial H ′ − d where d is the third coordinate of ciphertext, we can �nd which element
of the message space of the asymmetric encryption scheme is used to obtain the ciphrtext. Therefore,
in the next game we replace the decryption algorithm with a new decryption algorithm that does not
use the secret key of the asymmetric encryption scheme. In the seventh game, we replace H(δ∗, c∗) (this
is the randomness that is used to obtain the �rst coordinate of challenge ciphertext, e∗) with a random
element from the coin space of the asymmetric encryption scheme in order to be able to use the One-Way
security of asymmetric encryption scheme in our proof. Finally, we use the adaptive One-way to Hiding
Lemma presented in [Unr14a] to get an upper bound for the di�erence between the success probability
of the sixth game and the seventh game. We introduce the eighth game such that the success probability
of the game is this upper bound. We are able to reduce the success probability of the seventh game and
the eighth game to the One-Way security of the asymmetric encryption scheme for the reason that we
use a fresh randomness to get ciphertext e∗ and also the decryption algorithm in these two games does
not use the secret key of the asymmetric encryption scheme. This completes our proof.

Related Works: Boneh et al. [BDF+11] present a scheme that is secure in the random oracle model,
but insecure in the quantum random oracle model. They also analyze in which condition a classical ran-
dom oracle proof entails security in quantum random oracle model. Zhandry [Zha12] gives a proof of
security for an identity-based encryption scheme in the quantum random oracle model. However, they
techniques are not su�cient to prove the security of the scheme analyzed in this paper and they leave it
as an open problem.

Unruh [Unr14a] present position veri�cation scheme that is secure in the quantum random ora-
cle model and avoids the assumption in prior works. Unruh [Unr15] construct a non-interactive zero-
knowledge proof system in the quantum random oracle model.
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