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Abstract

We study the quantum query complexity of finding a collision for a function f whose
outputs are chosen according to a distribution with min-entropy k. We prove that Q(2%/9)
quantum queries are necessary to find a collision for function f.
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The problem and motivation: Let D be a distribution with min-entropy k over set Y and f
be a function whose outputs are drawn according to the distribution D. In this paper, we study
the difficulty of finding a collision for unknown function f in the quantum query model. Recall
that a collision for function f consists of two distinct inputs 1 and x9 such that f(z1) = f(z2).
Classically, by application of the birthday attack it is easy to observe that @(2k/ 2) queries are
necessary and sufficient to find a collision with constant probability. However, in quantum query
model this number of queries may be high for the reason that one quantum query may contain
the whole input-output values of function.

Zhandry [Zhal5] shows that ©(2%/3) quantum queries are necessary and sufficient to find a
collision for the function f when D is a uniform distribution. However, he leaves the non-uniform
case as an open problem. One motivation for studying the quantum collision problem for non-
uniform distribution is the interest in proving the security of classical cryptographic schemes
against quantum adversaries. Hash functions are a crucial cryptographic primitive that are used
to construct many encryption schemes and cryptographic schemes. They are usually modeled
as a random function and they are used inside to other functions. Therefore the output of
combination of a function and a random function may not be distributed uniformly and finding
a collision for this non-uniform distribution may break the security of the scheme. For example
the well-known Fujisaki-Okamoto construction [FO99| uses a random function to produce the
randomness for an encryption scheme. The security relies on the fact that the adversary can
not find two inputs of the random function that lead to the same ciphertext. This is roughly
equivalent to saying that Enc o H is collision-resistant where Enc stands for the encryption
function and H is a random function. In fact, our result is a crucial ingredient for analyzing a
variant of Fujisaki-Okamoto construction in the quantum setting [ETU15].

Our Contribution: We prove an Q(Qk/ %) lower bound for the quantum query complexity of
the function f. The proof procedure is as follows. We apply the Leftover Hash Lemma [HILL93)|
to the function f to extract the number of bits that are indistinguishable from uniformly random
bits. After applying the Leftover Hash Lemma, the output distribution of h o f, where h is a
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universal hash function, is indistinguishable from the uniform distribution over a set. Let A be a
quantum adversary that has quantum access to f and finds a collision for f. Using the existence
of A, we show that there exists a quantum algorithm B that has quantum access to h o f and
finds a collision for ho f with the same probability and the same number of queries as algorithm
A. Theorem 1.1 by Zhandry [Zhal2| shows that two distribution are indistinguishable if and
only if they are oracle-indistinguishable. Therefore, h o f is indistinguishable from a random
function (recall that the output of h o f is indistinguishable from the uniform distribution by
Leftover Hash Lemma) and as a result any algorithm B that finds a collision should not be able
to differentiate between h o f and a random function. By using an existing result for finding a
collision for a random function presented by Zhandry [Zhal5l Theorem 3.1|, we obtain an upper
bound for the probability of finding a collision for function h o f. Note that a collision for f
is a collision for h o f. Therefore, we get an upper bound for the probability of success for the
quantum collision problem applied to the function f. Following, we present the main theorem
of our work:

Theorem 1. Let D be a distribution over set Y with Hs (D) > k and X be some other set. Let
O be a function drawn from distribution DX, where DX is the distributions of functions from X

to Y where for each x € X, DX (x) is chosen independently according to D. Then any quantum
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algorithm A making q query to O returns a collision for O with probability at most C(q;,;i/lg

That 1s,
C(q+ 1)9/5

Pr[Coll(0; A9) : O «+ D¥] < S

The existing lower bounds: The quantum collision problem has been studied in various
previous works. Following, we mention the existing results on the number of queries that are
necessary to find a collision. An Q(N'/3) lower bound for function f is given by Aaronson and
Shi [AS04] and Ambainis [Amb05| where f is a two-to-one function with the same domain and
co-domain and N is the domain size. Yuen [Yueld] proves an Q(N'/%/polylogN) lower bound
for the quantum collision problem for a random function f with same domain and co-domain.
He reduces the distinguishing between a random function and a random permutation problem to
the distinguishing between a function with r-to-one part and a function without r-to-one part.
His proof is a merger of using the r-to-one lower bound from [AS04] and using the quantum
adversary method [Amb00]. Zhandry [Zhal5] improves the Yuen’s bound to the Q(N'/3) and
also removes the same size domain and co-domain constraint. He uses the existing result from
[Zhal2] to prove his bound.

The existing upper bounds: The sufficient number of quantum queries to find a collision
is given in the following works. A quantum algorithm that requires O(N 1/ 3) quantum queries
and finds a collision for any two-to-one function f with overwhelming probability is given by
Brassard, Hoyer and Tapp [BHT97]. Ambainis [Amb07| gives a quantum algorithm that re-
quires O(N 2/ 3) queries to find two equal elements among N given elements and therefore it
is an algorithm for finding a collision in an arbitrary function f given the promise that f has
at least one collision. Yuen [Yueld] shows that the collision-finding algorithm from [BHT97]
is able to produce a collision for a random function with same domain and co-domain using
O(N'/3) queries. Zhandry shows that O(M'/3) queries are adequate to find a collision for a
random function f : [N] — [M] where N = Q(M'/?). He uses Ambainis’s element distinctness
algorithm [Amb07] as a black box in his proof. Zhandry’s bound also implies that we can not
expect a lower bound for the query complexity of finding a collision for a non-uniform function
better than O(2F/3).
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