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Abstract

We study the quantum query complexity of �nding a collision for a function f whose

outputs are chosen according to a distribution with min-entropy k. We prove that Ω(2k/9)
quantum queries are necessary to �nd a collision for function f .

Keywords: Quantum, Collision, Non-uniform distribution, Query complexity.

The problem and motivation: Let D be a distribution with min-entropy k over set Y and f
be a function whose outputs are drawn according to the distribution D. In this paper, we study
the di�culty of �nding a collision for unknown function f in the quantum query model. Recall
that a collision for function f consists of two distinct inputs x1 and x2 such that f(x1) = f(x2).
Classically, by application of the birthday attack it is easy to observe that Θ(2k/2) queries are
necessary and su�cient to �nd a collision with constant probability. However, in quantum query
model this number of queries may be high for the reason that one quantum query may contain
the whole input-output values of function.

Zhandry [Zha15] shows that Θ(2k/3) quantum queries are necessary and su�cient to �nd a
collision for the function f when D is a uniform distribution. However, he leaves the non-uniform
case as an open problem. One motivation for studying the quantum collision problem for non-
uniform distribution is the interest in proving the security of classical cryptographic schemes
against quantum adversaries. Hash functions are a crucial cryptographic primitive that are used
to construct many encryption schemes and cryptographic schemes. They are usually modeled
as a random function and they are used inside to other functions. Therefore the output of
combination of a function and a random function may not be distributed uniformly and �nding
a collision for this non-uniform distribution may break the security of the scheme. For example
the well-known Fujisaki-Okamoto construction [FO99] uses a random function to produce the
randomness for an encryption scheme. The security relies on the fact that the adversary can
not �nd two inputs of the random function that lead to the same ciphertext. This is roughly
equivalent to saying that Enc ◦ H is collision-resistant where Enc stands for the encryption
function and H is a random function. In fact, our result is a crucial ingredient for analyzing a
variant of Fujisaki-Okamoto construction in the quantum setting [ETU15].

Our Contribution: We prove an Ω(2k/9) lower bound for the quantum query complexity of
the function f . The proof procedure is as follows. We apply the Leftover Hash Lemma [HILL93]
to the function f to extract the number of bits that are indistinguishable from uniformly random
bits. After applying the Leftover Hash Lemma, the output distribution of h ◦ f , where h is a
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universal hash function, is indistinguishable from the uniform distribution over a set. Let A be a
quantum adversary that has quantum access to f and �nds a collision for f . Using the existence
of A, we show that there exists a quantum algorithm B that has quantum access to h ◦ f and
�nds a collision for h◦f with the same probability and the same number of queries as algorithm
A. Theorem 1.1 by Zhandry [Zha12] shows that two distribution are indistinguishable if and
only if they are oracle-indistinguishable. Therefore, h ◦ f is indistinguishable from a random
function (recall that the output of h ◦ f is indistinguishable from the uniform distribution by
Leftover Hash Lemma) and as a result any algorithm B that �nds a collision should not be able
to di�erentiate between h ◦ f and a random function. By using an existing result for �nding a
collision for a random function presented by Zhandry [Zha15, Theorem 3.1], we obtain an upper
bound for the probability of �nding a collision for function h ◦ f . Note that a collision for f
is a collision for h ◦ f . Therefore, we get an upper bound for the probability of success for the
quantum collision problem applied to the function f . Following, we present the main theorem
of our work:

Theorem 1. Let D be a distribution over set Y with H∞(D) ≥ k and X be some other set. Let

O be a function drawn from distribution DX , where DX is the distributions of functions from X
to Y where for each x ∈ X, DX(x) is chosen independently according to D. Then any quantum

algorithm A making q query to O returns a collision for O with probability at most C(q+1)9/5

2k/5
.

That is,

Pr[Coll(O;AO) : O ← DX ] ≤ C(q + 1)9/5

2k/5
.

The existing lower bounds: The quantum collision problem has been studied in various
previous works. Following, we mention the existing results on the number of queries that are
necessary to �nd a collision. An Ω(N1/3) lower bound for function f is given by Aaronson and
Shi [AS04] and Ambainis [Amb05] where f is a two-to-one function with the same domain and
co-domain and N is the domain size. Yuen [Yue14] proves an Ω(N1/5/polylogN) lower bound
for the quantum collision problem for a random function f with same domain and co-domain.
He reduces the distinguishing between a random function and a random permutation problem to
the distinguishing between a function with r-to-one part and a function without r-to-one part.
His proof is a merger of using the r-to-one lower bound from [AS04] and using the quantum
adversary method [Amb00]. Zhandry [Zha15] improves the Yuen's bound to the Ω(N1/3) and
also removes the same size domain and co-domain constraint. He uses the existing result from
[Zha12] to prove his bound.

The existing upper bounds: The su�cient number of quantum queries to �nd a collision
is given in the following works. A quantum algorithm that requires O(N1/3) quantum queries
and �nds a collision for any two-to-one function f with overwhelming probability is given by
Brassard, Hφyer and Tapp [BHT97]. Ambainis [Amb07] gives a quantum algorithm that re-
quires O(N2/3) queries to �nd two equal elements among N given elements and therefore it
is an algorithm for �nding a collision in an arbitrary function f given the promise that f has
at least one collision. Yuen [Yue14] shows that the collision-�nding algorithm from [BHT97]
is able to produce a collision for a random function with same domain and co-domain using
O(N1/3) queries. Zhandry shows that O(M1/3) queries are adequate to �nd a collision for a
random function f : [N ] → [M ] where N = Ω(M1/2). He uses Ambainis's element distinctness
algorithm [Amb07] as a black box in his proof. Zhandry's bound also implies that we can not
expect a lower bound for the query complexity of �nding a collision for a non-uniform function
better than O(2k/3).
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