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Abstract.
In recent years, the gap between theory and practice in
QKD has been significantly narrowed, particularly for
QKD systems with arbitrarily flawed optical receivers.
The status for QKD systems with imperfect light sources
is however less satisfactory, in the sense that the result-
ing secure key rates are often overly-dependent on the
quality of state preparation. This is especially the case
when the channel loss is high e.g., the key rate signifi-
cantly decreases with slight state preparation flaw [1] in
the high-loss regime. Here, we derive security bounds for
a wide class of realistic light sources and show that the
bounds are also efficient in the presence of high channel
loss. Our results strongly suggest the feasibility of long
distance provably-secure communication with imperfect
light sources.

Introduction.
Although state preparation flaws, such as multi-photon
emissions or modulation errors in modulators for
information-encoding, are common problems in QKD ex-
periments, a few considerations have been made. The
former problem can be solved by the use of the decoy
state method, however, the latter does not have an ad-
equate solution. In particular, it has been shown by
Gottesman et al [1] that such inaccuracies in encoding
can lead to very pessimistic secret key rates in the pres-
ence of high quantum channel loss. Very recently, a loss-
tolerant QKD protocol has been proposed by Tamaki
et al as a means to overcome typical encoding flaws in
QKD systems [2]. For example, if the quantum states are
encoded into the polarization degree-of-freedom of pho-
tons, an encoding flaw could be due to a misalignment in
the wave-plate used to set the desired polarization. The
loss-tolerant protocol is similar to the Bennett-Brassard
1984 (BB84) QKD scheme, but instead of considering all
the four BB84 states, it uses only three of them. In-
terestingly, by considering statistics beyond those of the
BB84 protocol, the resulting secret key rate is the same
as the one of BB84’s. More importantly, the secret key
rate has the very nice property in that it is almost in-
dependent of encoding flaws. These results imply that
the usual stringent demand on precise state preparation
can be considerably relaxed and one only needs to know
the prepared states. Additionally, it is useful to mention

that most current BB84 QKD systems can easily switch
to the loss-tolerant QKD protocol without much hard-
ware modifications. In anticipation that the loss-tolerant
QKD protocol will be widely implemented in the near
future, we extend the security analysis in Ref. [2] to the
finite-key regime, i.e., we derive explicit bounds on the
extractable secret key length (in [3], the authors have im-
plemented the loss-tolerant protocol experimentally with
careful verification of the qubit assumption used in the
protocol. This paper also includes some finite-key anal-
ysis of the protocol. Unfortunately, however, its phase
error rate estimation seems to be valid only against col-
lective attacks). Furthermore, our bounds can be applied
to a wide range of imperfect light sources—including typ-
ical cases whereby the intensity of the laser is fluctuat-
ing between a certain range. Also, the security bounds
are obtained within the so-called universal-composable
framework [4], and thus secret keys generated using these
bounds can be applied to other cryptographic tasks like
the one-time-pad. In order to investigate the feasibility
of our results, we consider a QKD system model that
borrows parameters from recent fiber-based QKD exper-
iments. With this realistic model, our numerical simula-
tions show that provably-secure keys can be distributed
up to a fiber length of about 120 km, even when only
1011 signals are sent by Alice to Bob.

Assumptions on Alice and Bob’s devices.
We consider that Alice’s transmitter contains a laser
source, an amplitude modulator and a phase modulator.
See Fig. 1. The laser is single-mode and emits signals
with a Poissonian photon number distribution. Also, we
assume that Alice encodes the bit and the basis infor-
mation in the relative phase θA between a signal and a
reference pulse, whose joint phase is perfectly random-
ized. Let us emphasize, however, that the security proof
that we provide in this paper applies as well to other
coding schemes like, for instance, the polarization or the
time-bin coding schemes. Next we present the two types
of imperfections that we consider for Alice’s device.

Assumptions on Alice’s apparatus.
1. Intensity fluctuations.
The fluctuation of the intensity of the emitted coherent
light is typically due to the laser source and imperfec-
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FIG. 1: In each trial, Alice’s laser emits two consecutive co-
herent pulses representing the signal and the reference pulse.
For this, she first uses an amplitude modulator to select the
pulses’ intensity k ∈ K. After that, she applies a phase shift
{0, π, π/2} to the signal pulse. On reception, Bob splits the
received pulses into two beams and then applies a phase shift
{0,−π/2} to one of them. Also, he applies a one-pulse delay
to one of the arms of the interferometer and then recombine
the pulses at a 50:50 beamsplitter (BS). A “click” in detector
D0 (D1) provides Bob the key bit y′ = 0 (y′ = 1).

tions in the amplitude modulator. Here we shall con-
sider that Alice does not have a full description of the
probability density function of the fluctuations, but she
only knows their range 1. That is, she knows that the
intensity k ∈ K = {ks, kd1, kd2} of the emitted coherent
light lies in an interval k ∈ [k−, k+] except with error
probability ϵinten, where k+(−) is the upper (lower) in-
tensity. For simplicity, we shall assume that ϵinten = 0.
If ϵinten > 0 this error probability can be directly taken
into account through the security parameter. The inten-
sities of the signal and reference pulses are ksig := kV
and kref := k(1− V ) respectively, with 0 < V < 1.

2. Imperfect encoding of the bit and basis information.
In our protocol, Alice chooses the relative phase θA at
random from {0, π/2, π} to encode the bit and basis in-
formation. The phase θA ∈ {0, π} corresponds to the
Z basis states which are selected with equal probability,
and θA = π/2 denotes the X basis state. Alice assigns a
bit value y = 0 to θA ∈ {0, π/2} and a bit value y = 1 to
θA = π. Due to the misalignment of the optical system,
however, the actual relative phase prepared by Alice may
deviate from the desired angle θA by a factor ∆θA. Alice
does not need to know the origin of the encoding errors
∆θA, but we assume that she knows the probability dis-
tribution p(∆θA) of ∆θA. Also, we assume that p(∆θA)
is independently and identically distributed for each run
of the protocol. Moreover, we consider that there are no
side-channels in Alice’s device.

Assumptions on Bob’s apparatus.

1 Note that in those scenarios where Alice knows the exact prob-
ability distribution of the fluctuations then the conventional
decoy-state method can be directly applied.

FIG. 2: (Color online) Secret key rate (per pulse) in loga-
rithmic scale vs fiber length for the case with exact intensity
control. The security parameter is ϵsec = 10−10 and the total
number of signals sent by Alice is N = 10s with s = 9, 10, 11
and 12 (from left to right). The rightmost two lines corre-
spond to the asymptotic secret key rate with two decoy set-
tings. The solid lines denote the case ξ=0 (i.e., the perfect en-
coding scenario) while the dashed lines show the case ξ=0.147
(this error parameter is measured in an updated version of a
commercial plug&play system (ID Quantique Clavis2) [3]).
The experimental parameters are described in the main text.

FIG. 3: (Color online) Secret key rate (per pulse) in logarith-
mic scale vs fiber length when the intensity fluctuation is 5%.
The security parameter is ϵsec = 10−8 and the total number of
signals sent by Alice is N = 10s with s = {14, 15} (from left to
right). The rightmost two lines correspond to the asymptotic
secret key rate with two decoy settings. The solid lines de-
note the case ξ = 0 (i.e., the perfect encoding scenario) while
the dashed lines show the case ξ = 0.147 (which is equiva-
lent to a phase modulation error of 8.42◦). The experimental
parameters are described in the main text.

We consider that the detection efficiency of Bob’s detec-
tors is independent of his measurement basis choice. A
phase value θB = 0 (θB = −π/2) corresponds to a device
parameter to choose the Z (X) basis for the measure-
ment. Also, like in the case of Alice, we consider that
Bob uses an imperfect phase modulator that shifts the
phase of the incoming signals. Furthermore, we assume
that there are no side-channels in Bob’s device.

Simulation of the key rate.
We show the simulation result for a fiber-based QKD sys-
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tem. Alice chooses the intensity of the laser from the set
{ks, kd1, kd2}, where we fix the intensity of the weakest
decoy state to kd2 = 2×10−4. Also, we assume that Bob
uses an active measurement setup with two single-photon
detectors with detection efficiency ηdet = 15% and a dark
count probability pd = 5 × 10−7. The attenuation co-
efficient of the optical fiber is 0.2dB/km and its trans-
mittance is ηch = 10−0.2D/10 with D denoting the fiber
length. The overall misalignment error of the optical sys-
tem is fixed to be emis = 1%. In addition, we assume an
error correction leakage λEC = fECNsh(ez), where ez is
the bit error rate of the sifted key whose size is Ns. More-
over, for simplicity, we consider that the error correction
efficiency of the protocol is a constant number fEC=1.16
which does not depend on the size of the sifted key. We
model the imperfection of Alice’s (Bob’s) phase modula-
tor as ∆θA = ξθA/π (∆θB = −∆θA). Also, we consider
that the intensity fluctuation of the laser source lies in
the interval [k−, k+] with k− = (1−r)k and k+ = (1+r)k
for a fixed value r.
In these conditions, we simulate the secret key gener-

ation rate for a fixed value of the correctness coefficient
ϵc = 10−15. For this, we perform a numerical optimiza-
tion of the resulting secure key rate over the free param-
eters pz, pks , pkd1

, ks and kd1, where pz is the probability
that Alice (Bob) selects the Z basis, pks is the probabil-
ity that Alice selects the signal setting and pkd1

is the
probability that Alice selects the first decoy setting.

A. Key generation rate for the exact intensity
control case.
The resulting secret key rate for this scenario, i.e. when
r = 0, is shown in Fig. 2. The security parameter is
ϵsec = 10−10 and the total number of signals sent by Al-
ice is N = 10s with s = 9, 10, 11 and 12. We consider
two possible cases: ξ = 0 (i.e., the perfect encoding case)
and ξ = 0.147, which is equivalent to a phase modulation
error of 8.42◦. For comparison, Fig. 2 also includes the
asymptotic secret key rate (i.e., the key rate in the limit
of infinitely large keys) with two decoy settings.
As a result, we find that the effect of state prepara-

tion flaws on the key generation rate is almost negligible.
Also, we have that if the total number of signals sent by
Alice is about N = 1012, Alice and Bob can exchange
secret keys over 150 km both when ξ = 0 and ξ = 0, 147.

B. Key generation rate for the intensity-
fluctuation case.
We also evaluate the resulting secret key rate when the
laser source suffers from intensity fluctuations. We study
the case for r = 0.05. The result is shown in Fig. 3.
Here we consider that N = {1014, 1015}, and the term ξ
takes again the values ξ = 0 and ξ = 0.147. The security
parameter is ϵsec = 10−8 in Fig. 3.

For comparison, Fig. 3 also shows the asymptotic se-
cret key rate when Alice and Bob use two decoy settings.
In this asymptotic case, we find that the degradation on
the achievable key rate, when compared to the scenario
r = 0, is only about 20 km.

In the finite-key regime, however, we obtain that the
presence of intensity fluctuations seems to strongly limit
the key generation rate if Alice and Bob do not know
their probability distribution but only know the interval
where the fluctuations lie in. The main technical reason
for this behavior seems to be the fact that Azuma’s in-
equality [5] has a relatively slow convergence speed when
compared to the Chernoff bound [6] and the Multiplica-
tive Chernoff bound [7].

Conclusion.
In summary, we have provided explicit security bounds
for the loss-tolerant QKD protocol in the finite-key
regime. On the application front, our results constitute
an important step towards practical QKD with imperfect
light sources, in that the resulting security performance
is robust against encoding inaccuracies like, for instance,
optical misalignment. Furthermore, our results take into
account intensity fluctuations in the light source, which
is a common experimental fact. Our results highlight the
importance of the stable control of the intensity modu-
lator as well as the need for a precise estimation of its
intensity, which is not often sufficiently emphasized in
the experiments.
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