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Abstract

The squashed entanglement of a quantum channel finds application as an upper bound on the
rate at which secret key and entanglement can be generated when using the quantum channel a large
number of times in addition to unlimited classical communication. This quantity has led to an upper
bound of log((1 + η)/(1 − η)) on the capacity of an optical communication channel for such a task,
where η is the average fraction of photons that make it from the input to the output of the channel.
In this work, we go beyond the single-sender single-receiver setting and consider a more general
scenario involving a quantum broadcast channel between a single sender and multiple receivers. We
establish constraints on the rates at which secret key and entanglement can be generated between
any subset of the users of such a channel. We do so by employing multipartite generalizations of the
squashed entanglement, while along the way developing several new properties of these measures.
We apply our results to the case of an optical broadcast channel with one sender and two receivers,
and characterize the rate-loss tradeoffs for such a channel.

Background. Quantum mechanics enables both unconditionally secure classical communication as well
as faithful quantum communication. The former is made possible by quantum key distribution (QKD)
and direct communication via the one-time pad protocol. On the other hand, the latter can be achieved
with the help of shared entanglement and classical communication via the quantum teleportation proto-
col. A general paradigm for generating unconditionally secure secret key in a QKD protocol involves the
distillation of the so-called “private states” [2] under unlimited local operations and classical commu-
nication (LOCC). Likewise, the most general paradigm for generating shared entanglement is to distill
maximally entangled states under unlimited LOCC. The fact that both entanglement distillation and
secret-key agreement can be accomplished most generally under the umbrella of LOCC allows for a
combined treatment of the two tasks.

Over the years, various optical QKD systems have been developed and implemented, and their
security proven. Unfortunately, practical implementations of optical QKD are known to suffer from a
rate-loss tradeoff that forces the key distillation rates to decay exponentially with the distance of com-
munication. Recently, this fact was established as a fundamental limitation of the optical communication
channel using the squashed entanglement of a channel, which is an upper bound for the entanglement
distillation capacity and secret key agreement capacity of a channel [4]. The squashed entanglement
upper bound, when evaluated for a pure-loss bosonic point-to-point channel, was shown to be solely
a function of the loss parameter of the channel, independent of the transmitted power. Further, the
upper bound was shown to be nearly optimal at high loss and to match the rates achieved in current
state-of-the-art QKD systems, thereby asserting that no yet-to-be-discovered protocol for QKD could
perform any better than the current QKD systems. This development has firmly established the need
for quantum repeater technology, which would enable relaying quantum states over long distances, and
thereby aid in circumventing the rate-loss tradeoff.

Motivation. One of the main long-term goals of quantum communication and cryptography is to
establish quantum networks, which enable secure classical communication as well as the sharing of
entanglement between multiple users for various quantum information processing applications. While
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Figure 1: A general protocol for entanglement distillation and secret key agreement using LOCC and a
quantum broadcast channelNA→BC with one sender and two receivers. The protocol uses the channel n
times, and the primed registers represent “scratch” registers that each party uses for local processing. The
state ΩABC at the end is ε-close in trace distance to the ideal state which is a tensor product of maximally
entangled states and private states on systems shared between all possible subsets of the three users of
the channel.

point-to-point channels certainly are the preferred architecture to establish long distance links in the
networks, they are not so favored for the “end-user stage”, where the goal is to enable multiple users to
access the network for secure communication. This is because, enabling multiple users to use a quantum
network via point-to-point channels would require full QKD systems to be installed for each end-user,
which could be very expensive. Whereas, architectures based on one-sender multiple-receivers (which
can be modeled as broadcast channels) and vice versa (multiple access channels) offer more viable and
efficient options for the end-user stage.

In this work, we consider an architecture based on the quantum broadcast channel for multipartite
secret-key agreement and entanglement generation. Our goal is to obtain constraints on the achievable
rates between any subset of the users of a one-to-many quantum broadcast channel. We analyze a general
protocol for entanglement distillation and secret-key agreement over a quantum broadcast channel. Fig.
1 depicts a protocol for the one-sender two-receiver case as an example. The protocol consists of n
applications of the broadcast channel, where successive applications of the channel are interleaved by
LOCC involving all the three users.

Tools. We use multipartite generalizations of the squashed entanglement quantities defined earlier in
[6, 1] to give our constraints on achievable entanglement distillation and secret-key agreement rates over
the quantum broadcast channel. Along the way, we develop several new properties of these quantities
(see [3, Lemmas 6-8]). Among these, the property perhaps most important is [3, Lemma 6], which is a
multipartite generalization of the sub-additivity inequality introduced in [5, Theorem 7]. This property
allows us to “peel off” the actions of the channel from the output state of the protocol one by one, thereby
allowing us to upper bound the squashed entanglement of the output state in terms of a sum of squashed
entanglements on states that result from each successive action of the channel and each round of LOCC.

Main Result. Our main result is a theorem that constrains the rates at which secret key and entangle-
ment can be generated between any subset of users of a one-to-many quantum broadcast channel when
assisted by unlimited LOCC between all the users of the channel. The bounds we give are single-letter
bounds, i.e., they can be evaluated in terms of the output of a single use of the channel when input with
a pure state. Our theorem for a one-sender two-receiver quantum broadcast channel is stated as follows
[3, Theorem 11]:

Theorem 1. LetNA→BC be a quantum broadcast channel from a sender Alice to receivers Bob and Charlie. If the
rate tuple (EAB,EAC,EBC,EABC,KAB,KAC,KBC,KABC) is achievable, then there exists a pure state φRA with

ωRBC ≡ NA→BC(φRA), (1)

2



such that the following bounds hold

EAB + KAB + EBC + KBC + EABC + KABC ≤ Esq (RC; B)ω (2)
EAC + KAC + EBC + KBC + EABC + KABC ≤ Esq (RB; C)ω (3)
EAB + KAB + EAC + KAC + EABC + KABC ≤ Esq (R; BC)ω (4)

EAB + KAB + EAC + KAC + EBC + KBC

+
3
2

(EABC + KABC) ≤ min
{
Esq (R; B; C)ω , Ẽsq (R; B; C)ω

}
. (5)

The dimension of system R need not be any larger than the dimension of the channel input.

We also state and prove a general theorem for a one-sender and m-receiver quantum broadcast channel
in [3, Theorem 12].

Application to pure-loss bosonic broadcast channels. We apply our result to the case of a pure-
loss bosonic broadcast channel (namely where the environment injects the vacuum state) from a single
sender Alice to two receivers Bob and Charlie. The channel is modeled by a three-way beamsplitter
transformation

â→
√
ηBb̂ +

√
ηCĉ +

√
1 − ηB − ηCê, (6)

where ηB, ηC ∈ [0, 1], ηB + ηC ≤ 1, â, b̂, and ĉ, are mode operators corresponding to the sender Alice’s
input, Bob’s output, and Charlie’s output, respectively, and where ê is the mode operator corresponding
to the environment of the channel. Our theorem is stated as follows:

Theorem 2. Let a pure-loss bosonic broadcast channel from a sender Alice to receivers Bob and Charlie be described
by the mode transformation in (6). Then the achievable entanglement distillation and secret key agreement rates
(EAB,EAC,EBC,EABC,KAB,KAC,KBC,KABC) between two or more of the three parties involved are bounded as
follows:

EAB + KAB + EBC + KBC + EABC + KABC ≤ log
(

1 + ηB − ηC

1 − ηB − ηC

)
, (7)

EAC + KAC + EBC + KBC + EABC + KABC ≤ log
(

1 + ηC − ηB

1 − ηB − ηC

)
, (8)

EAB + KAB + EAC + KAC + EABC + KABC ≤ log
(

1 + ηB + ηC

1 − ηB − ηC

)
, (9)

and

EAB + KAB + EAC + KAC + EBC + KBC +
3
2

(EABC + KABC)

≤
1
2

log

 ηB(
1 − η

) (
1 − η∗E′

) + 1

 + log

 ηC(
1 − η

) (
1 − η∗E′

) + 1

 + log
(

η(
1 − η

)
η∗E′

+ 1
) , (10)

where η∗E′ is the solution of

1
η2

E′
(
1 − η

)
/ηB + ηE′

+
1

η2
E′

(
1 − η

)
/ηC + ηE′

=
1(

1 − ηE′
)2 (

1 − η
)
/η + 1 − ηE′

. (11)
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