Specious Adversaries and Quantum Private Information Retrieval
QCrypt 2013

Ämin Baumeler1 and Anne Broadbent2

1Faculty of Informatics
Università della Svizzera italiana, Lugano, Switzerland

2Department of Combinatorics and Optimization &
Institute for Quantum Computing
University of Waterloo, Waterloo, Canada

August 8, 2013
Outline

• Private Information Retrieval
• Adversarial models
• Proof sketch
Results

- No-go: QPIR secure against specious/purified adversaries
- Quantum/classical adversary model comparison nontrivial
Private Information Retrieval

Server

\[x_1, \ldots, x_n \]

PIR

Client

\[i \]

\[x_i \]
Private Information Retrieval

\[x_1, \ldots, x_n \rightarrow PIR \rightarrow x_i \]

Server

Client

\(i \)

Oblivious Transfer: Inf. th. security against server and client
Private Information Retrieval

Oblivious Transfer: Inf. th. security against server and client

PIR: Inf. th. security against server
Private Information Retrieval

Server

X_1, \ldots, X_n

PIR

$\leftarrow i$

$\rightarrow X_i$

Client

Oblivious Transfer: Inf. th. security against server and client

PIR: Inf. th. security against server

Private Query: Relaxed security requirements
Protocol: ideal world and real world

$\pi_s \pi_c R x_1, \ldots, x_n \rightarrow PIR \leftarrow i \rightarrow x_i$

Expression: PIR

\[1\] Maurer, Renner, *ICS 2011*, 2011.
Protocol: ideal world and real world

Expression: PIR

Expression: $\pi^s \pi^c R$

1Maurer, Renner, ICS 2011, 2011.
Protocol: ideal world and real world

Expression: PIR

Expression: $\pi^s \pi^c R$

Trivial protocol: Server sends database to client

1Maurer, Renner, ICS 2011, 2011.
Communication Complexity

Classical lower bond: $\Omega(n)$ honest-but-curious
Quantum lower bound: $\Omega(n)$ general

Communication Complexity

<table>
<thead>
<tr>
<th>Type</th>
<th>Lower Bound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical lower bond</td>
<td>$\Omega(n)$</td>
<td>honest-but-curious</td>
</tr>
<tr>
<td>Quantum lower bound</td>
<td>$\Omega(n)$</td>
<td>general</td>
</tr>
<tr>
<td>Le Gall’s protocol</td>
<td>$O(\sqrt{n})$</td>
<td>“quantum” honest-but-curious</td>
</tr>
</tbody>
</table>

Communication Complexity

Classical lower bond: \(2 \Omega(n) \) honest-but-curious
Quantum lower bound: \(3 \Omega(n) \) general
Le Gall’s protocol: \(O(\sqrt{n}) \) “quantum” honest-but-curious
this work: \(\Omega(n) \) specious/purified adversaries

\(^4\) Le Gall, *Theory of Computing, 8*(1), 2012.
Honest-but-curious adversary

Honest-but-curious
 honest: follow protocol
 curious: copy transcript
Honest-but-curious adversary

Honest-but-curious
 honest: follow protocol
 curious: copy transcript

“Quantum” honest-but-curious
 honest: follow protocol, to the extend of tracing-out
 curious: no-cloning theorem
Honest-but-curious adversary

Honest-but-curious
 honest: follow protocol
 curious: copy transcript

“Quantum” honest-but-curious
 honest: follow protocol, to the extend of tracing-out
 curious: no-cloning theorem

Audit point-of-view: pass audit at any step in the protocol
Specious5 adversary

Adversary can undo malicious actions at every step in the protocol.

5Dupuis, Nielsen, and Salvail, \textit{CRYPTO10}, 2010.
Specious5 adversary

Adversary can undo malicious actions at every step in the protocol.

\textbf{specious} | 'spi\-ʃəs |

adjective
superficially plausible, but actually wrong: \textit{a specious argument}.
• misleading in appearance, especially misleadingly attractive: \textit{the music trade gives Golden Oldies a specious appearance of novelty.}

5Dupuis, Nielsen, and Salvail, \textit{CRYPTO10}, 2010.
Specious adversary

Adversary can undo malicious actions at every step in the protocol.

specious	ˈspiːʃəs
adjective
superficially plausible, but actually wrong: *a specious argument.*
- misleading in appearance, especially misleadingly attractive: *the music trade gives Golden Oldies a specious appearance of novelty.*

γ-specious adversary $\hat{\pi}^s$:

$$\forall k \exists L_k \quad \Delta(\pi^s_k \pi^c_k R, L_k \hat{\pi}^s_k \pi^c_k R) \leq \gamma$$

Specious5 adversary

Adversary can undo malicious actions at every step in the protocol.

\textbf{Specious}5 \textbf{adversary}

\begin{itemize}
 \item Adversary can undo malicious actions at every step in the protocol.
 \item Example: purified adversary $\bar{\pi}^s$
\end{itemize}

\textbf{specious} | 'spiːʃəs |
\textit{adjective}
superficially plausible, but actually wrong: \textit{a specious argument}.
\textbullet\ misdeading in appearance, especially misleadingly attractive: \textit{the music trade gives Golden Oldies a specious appearance of novelty}.

γ-specious adversary $\hat{\pi}^s$:
\[\forall k \exists L_k \quad \Delta(\pi_k^s \pi_k^c R, L_k \hat{\pi}_k^s \pi_k^c R) \leq \gamma \]

\textbf{Example}: purified adversary $\bar{\pi}^s$

5Dupuis, Nielsen, and Salvail, \textit{CRYPTO10}, 2010.
Requirements

Correctness: \(\Delta(\pi^s \pi^c R, \text{PIR}) \leq \varepsilon \)

Security (general): \(\forall \hat{\pi}^s \exists \sigma^s \Delta(\hat{\pi}^s \pi^c R, \sigma^s \text{PIR}) \leq \delta \)

Security (specious): \(\forall \hat{\pi}^s \in S \forall k \exists \sigma^s \Delta(\hat{\pi}^s_k \pi^c_k R, \sigma^s \text{PIR}) \leq \delta \)
Result (simplified)

Theorem:
Let $\pi^s \pi^c R$ be an n-bit QPIR protocol secure against specious servers. Then $\pi^s \pi^c R$ has communication complexity of at least n.

Proof sketch / reduction to RAC:\(^6\)

$|\psi_{x,i}\rangle$: global state at the end of pure protocol on input x and i

1. Server runs purified protocol and simulates purified client with input 1
2. Server sends client’s part of $|\psi_{x,1}\rangle$ to client
3. Client runs local unitary: $\left(\mathds{1} \otimes U^{1 \rightarrow i}\right) |\psi_{x,1}\rangle = |\psi_{x,i}\rangle$

Single message transmitted is a random access code.\(^6\)

Conclusion

• QPIR secure against specious adversaries has communication complexity $\Omega(n)$

• Comparison between classical and quantum adversaries non-trivial

Conclusion

• QPIR secure against specious adversaries has communication complexity $\Omega(n)$

• Comparison between classical and quantum adversaries non-trivial

 I thought of another moral, more down to earth and concrete, The differences can be small, but they can lead to radically different consequences, like a railroad’s switch points; the chemist’s trade consists in good part in being aware of these differences, knowing them close up, and foreseeing their effects. And not only the chemist’s trade.7

7Primo Levi, The periodic table, 1984.